Full entry |
PDF
(0.2 MB)
Feedback

asymptotic expansion; retract method

References:

[1] Cezari, L.: **Asymptotic Behaviour and Stability Problems in Ordinary Differenal Equations**. Springer (1959).

[2] Diblík, J.: **Asymptotic behavior of solutions of a differential equation partially solved with respect to the derivative**. English. Russian original Sib. Math. J. 23 654-662 (1983); translation from Sib. Mat. Zh. 23 80-91 (1982). DOI 10.1007/BF00971283 | MR 0673540 | Zbl 0521.34003

[3] Diblík, J., Svoboda, Z.: **An existence criterion of positive solutions of $p$-type retarded functional differential equations**. J. Comput. Appl. Math. 147 (2002), 315-331. DOI 10.1016/S0377-0427(02)00439-9 | MR 1933599 | Zbl 1019.34072

[4] Diblík, J., Koksch, N.: **Existence of global solutions of delayed differential equations via retract approach**. Nonlinear Anal., Theory Methods Appl. 64 (2006), 1153-1170. DOI 10.1016/j.na.2005.06.030 | MR 2200483 | Zbl 1101.34046

[5] Lakshmikantham, V., Wen, L., Zhang, B.: **Theory of Differential Equations with Unbounded Delay**. Kluwer Academic Publishers, Dordrecht (1994). MR 1319339 | Zbl 0823.34069

[6] Svoboda, Z.: **Asymptotic behaviour of solutions of a delayed differential equation**. Demonstr. Math. (1995), 28 9-18. MR 1330074 | Zbl 0832.34086

[7] Svoboda, Z.: **Asymptotic integration of solutions of a delayed differential equation**. Sborník VA Brno ada B 1 (1998), 7-18.

[8] Šmarda, Z.: **The existence and asymptotic behaviour of solutions of certain class of the integro-differential equations**. Arch. Math., Brno 26 (1990), 7-18. MR 1188069 | Zbl 0728.45005