Previous |  Up |  Next

Article

Title: Some results on fuzzy proper functions and connectedness in smooth fuzzy topological spaces (English)
Author: Roopkumar, R.
Author: Kalaivani, C.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 311-332
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the notion of the $(\alpha ,\beta )$-weakly smooth fuzzy continuous proper function and discuss its properties. We also study several notions of connectedness in smooth fuzzy topological spaces and establish that the product of connected sets (spaces) is not connected in any sense, as well as investigate continuous images of smooth connected sets (spaces) under $(\alpha ,\beta )$-weakly smooth fuzzy continuous functions. (English)
Keyword: fuzzy proper function
Keyword: smooth fuzzy topology
Keyword: smooth fuzzy continuity
MSC: 54A40
idZBL: Zbl 1265.54051
idMR: MR3112490
DOI: 10.21136/MB.2012.142897
.
Date available: 2012-08-19T21:26:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142897
.
Reference: [1] Aygün, H., Abbas, S. E.: Some good extensions of Šostak's L-fuzzy topology.Hacet. J. Math. Stat. 36 (2007), 115-125. MR 2411629
Reference: [2] Abbas, S. E.: On smooth fuzzy subspaces.Int. J. Math. Math. Sci. 66 (2004), 3587-3602. Zbl 1071.54002, MR 2128776, 10.1155/S0161171204401021
Reference: [3] Chakraborty, M. K., Ahsanullah, T. M. G.: Fuzzy topology on fuzzy sets and tolerance topology.Fuzzy Sets Syst. 45 (1992), 103-108. Zbl 0754.54004, MR 1148457
Reference: [4] Chang, C. L.: Fuzzy topological spaces.J. Math. Anal. Appl. 24 (1968), 182-189. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [5] Chaudhuri, A. K., Das, P.: Some results on fuzzy topology on fuzzy sets.Fuzzy Sets Syst. 56 (1993), 331-336. Zbl 0794.54012, MR 1227903
Reference: [6] Demirici, M.: On several types of compactness in smooth topological spaces.Fuzzy Sets Syst. 90 (1997), 83-88. MR 1460342
Reference: [7] Demirici, M.: Neighborhood structures of smooth topological spaces.Fuzzy Sets Syst. 92 (1997), 123-128. MR 1481022
Reference: [8] Demirici, M.: Three topological structures of smooth topological spaces.Fuzzy Sets Syst. 101 (1999), 185-190. MR 1658916
Reference: [9] Gayyar, M. K. El, Kerre, E. E.: Almost compactness and near compactness in smooth topological spaces.Fuzzy Sets Syst. 62 (1994), 193-202. Zbl 0833.54007, MR 1274998
Reference: [10] Alla, M. A. Fath, Mahmoud, F. S.: Fuzzy topology on fuzzy sets, functions with fuzzy closed graphs, strong fuzzy closed graphs.J. Fuzzy Math. 9 (2001), 525-533. MR 1859535
Reference: [11] Guido, C.: Powerset operators based approach to fuzzy topologies on fuzzy sets, topological and algebraic structures in fuzzy sets.A handbook of recent developments in the Mathematics of fuzzy sets S. E. Rodabaugh and E. P. Klement Trends Log. Stud. Log. Libr., vol. 20, Kluwer Academic Publishers, Dordrecht (2003), 401-413. MR 2046750
Reference: [12] Hazra, R. N., Samanta, S. K., Chattopadhyay, K. C.: Fuzzy topology redefined.Fuzzy Sets Syst. 45 (1992), 79-82. Zbl 0756.54002, MR 1148454
Reference: [13] Höhle, U.: Upper semicontinuous fuzzy sets and applications.J. Math. Anal. Appl. 78 (1980), 659-673. Zbl 0462.54002, MR 0601561, 10.1016/0022-247X(80)90173-0
Reference: [14] Höhle, U., (eds.), S. E. Rodabaugh: Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory.Kluwer Academic Publishers, Dordrecht (1999). Zbl 0942.00008, MR 1788899
Reference: [15] Höhle, U., Šostak, A. P.: A general theory of fuzzy topological spaces.Fuzzy Sets Syst. 73 (1995), 131-149. Zbl 0948.54003, MR 1355360
Reference: [16] Höhle, U., Šostak, A. P.: Axiomatic foundations of fixed-basis fuzzy topology.Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 123-272. Zbl 0977.54006, MR 1788903
Reference: [17] Kubiak, T.: On fuzzy topologies.Ph.D. thesis, Adam Mickiewicz University. Poznań, Poland (1985).
Reference: [18] Kubiak, T., Šostak, A. P.: Lower set-valued fuzzy topologies.Quaestiones Math. 20 (1997), 423-429. Zbl 0890.54005, MR 1641456, 10.1080/16073606.1997.9632016
Reference: [19] Kubiak, T., Šostak, A. P.: Foundations of the theory of $(L,M)$-fuzzy topological spaces.Abstracts of the 30th Linz Seminar on Fuzzy Set Theory U. Bodenhofer, B. De Baets, E. P. Klement, S. Saminger-Platz Johannes Kepler Universität, Linz (2009), 70-73. MR 2819393
Reference: [20] Ming, P. P., Ming, L. Y.: Fuzzy topology, I. Neighborhood structure of a fuzzy point and Moore-Smith convergence.J. Math. Anal. Appl. 76 (1980), 571-599. MR 0587361, 10.1016/0022-247X(80)90048-7
Reference: [21] Peeters, W.: Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures.Fuzzy Sets Syst. 104 (1999), 423-433. Zbl 0944.54004, MR 1692338
Reference: [22] Rodabaugh, S. E.: Categorical foundations of variable-basis fuzzy topology.Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 273-388. MR 1788904
Reference: [23] Rodabaugh, S. E.: Powerset operator foundations for Poslat fuzzy set theories and topologies.Mathematics of fuzzy Sets: Logic, Topology, and Measure Theory U. Höhle, S. E. Rodabaugh Kluwer Academic Publishers, Dordrecht (1999), 91-116. Zbl 0974.03047, MR 1788901, 10.1007/978-1-4615-5079-2_3
Reference: [24] Ramadan, A. A., Alla, M. A. Fath, Abbas, S. E.: Smooth fuzzy topology on fuzzy sets.J. Fuzzy Math. 10 (2002), 59-68. MR 1894600
Reference: [25] Roopkumar, R., Kalaivani, C.: Continuity of fuzzy proper function on Šostak's $I$-fuzzy topological spaces.Commun. Korean Math. Soc. 26 (2011), 305-320. MR 2816568, 10.4134/CKMS.2011.26.2.305
Reference: [26] Šostak, A. P.: On a fuzzy topological structure.Rend. Circ. Matem. Palermo Ser. II. 11 (1985), 89-103. MR 0897975
Reference: [27] Srivastava, R.: On separation axioms in a newly defined fuzzy topology.Fuzzy Sets Syst. 62 (1994), 341-346. Zbl 0833.54006, MR 1276601
.

Files

Files Size Format View
MathBohem_137-2012-3_5.pdf 330.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo