Previous |  Up |  Next

Article

Keywords:
residuated lattice; bounded integral residuated lattice; modal operator; closure operator
Summary:
Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
References:
[1] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices. Algebra Univers. 50 (2003), 83-106. MR 2026830 | Zbl 1092.06012
[2] Balbes, R., Dwinger, P.: Distributive Lattices. University Missouri Press, Columbia (1974). MR 0373985 | Zbl 0321.06012
[3] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (2000). Zbl 0937.06009
[4] Ciungu, L. C.: Classes of residuated lattices, Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180-207. MR 2359903
[5] DiNola, A., Georgescu, G., Iorgulesu, A.: Psedo-BL algebras; Part I. Multiple Val. Logic 8 (2002), 673-714. MR 1948853
[6] Dowker, C. H., Papert, D.: Quotient Frames and Subspaces. Proc. London Math. Soc. 16 (1966), 275-296. MR 0202648 | Zbl 0136.43405
[7] Dvurečenskij, A.: Every linear pseudo BL-algebra admits a state. Soft Comput. 11 (2007), 495-501. DOI 10.1007/s00500-006-0078-2 | Zbl 1122.06012
[8] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded Rl-monoids. Math. Slovaca 56 (2006), 487-500. MR 2293582
[9] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated l-monoids. Discrete Math. 306 (2006), 1317-1326. DOI 10.1016/j.disc.2005.12.024 | MR 2237716
[10] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded Rl-monoids. Semigroup Forum 72 (2006), 191-206. DOI 10.1007/s00233-005-0545-6 | MR 2216089
[11] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271-288. MR 1860848 | Zbl 0994.03017
[12] Flondor, P., Georgescu, G., Iorgulescu, A.: Pseudo-t-norms and pseudo-BL algebras. Soft Comput. 5 (2001), 355-371. DOI 10.1007/s005000100137 | Zbl 0995.03048
[13] Freyd, P. J.: Aspects of topoi. Bull. Austral. Math. Soc. 7 (1972), 1-76. DOI 10.1017/S0004972700044828 | MR 0396714 | Zbl 0252.18002
[14] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam (2007). MR 2531579 | Zbl 1171.03001
[15] Georgescu, G., Iorgulescu, A.: Pseudo-$ MV$ algebras. Multiple Val. Logic 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[16] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998). MR 1900263
[17] Harlenderová, M., Rachůnek, J.: Modal operators on $ MV$-algebras. Math. Bohem. 131 (2006), 39-48. MR 2211002 | Zbl 1112.06014
[18] Jipsen, P., Tsinakis, C.: A Survey of Residuated Lattices. Ordered Algebraic Structures, Kluwer, Dordrecht (2006), 19-56. MR 2083033
[19] Kondo, M.: Modal operators on commutative residuated lattices. Math. Slovaca 61 (2011), 1-14. DOI 10.2478/s12175-010-0055-1 | MR 2772354 | Zbl 1265.03081
[20] Lawvere, F. W.: Quantifiers and Sheaves. Actes Congr. internat. Math. 1 (1971), 329-334. MR 0430021 | Zbl 0261.18010
[21] Lawvere, F. W.: Toposes, Algebraic Geometry and Logic. Lecture Notes 274, Springer, Berlin (1972). MR 0330254 | Zbl 0233.00005
[22] Macnab, D. S.: Modal operators on Heyting algebras. Alg. Univ. 12 (1981), 5-29. DOI 10.1007/BF02483860 | MR 0608645 | Zbl 0459.06005
[23] Rachůnek, J.: A non-commutative generalization of MV-algebras. Czech. Math. J. 52 (2002), 255-273. DOI 10.1023/A:1021766309509 | MR 1905434 | Zbl 1012.06012
[24] Rachůnek, J., Šalounová, D.: Modal operators on bounded commutative residuated l-monoids. Math. Slovaca 57 (2007), 321-332. DOI 10.2478/s12175-007-0026-3 | MR 2357828
[25] Rachůnek, J., Šalounová, D.: A generalization of local fuzzy structures. Soft Comput. 11 (2007), 565-571. DOI 10.1007/s00500-006-0101-7 | Zbl 1121.06013
[26] Rachůnek, J., Šalounová, D.: Modal operators on bounded residuated l-monoids. Math. Bohem. 133 (2008), 299-311. MR 2494783 | Zbl 1199.06043
[27] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223-233. MR 2229343 | Zbl 1150.06015
[28] Wraith, G. C.: Lectures on elementary topoi. Model Theor. Topoi, Collect. Lect. var. Auth., Lect. Notes Math. 445 (1975), 114-206. DOI 10.1007/BFb0061296 | MR 0393179 | Zbl 0323.18005
Partner of
EuDML logo