Previous |  Up |  Next

Article

Title: The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements (English)
Author: Dalík, Josef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 5
Year: 2012
Pages: 445-462
Summary lang: English
.
Category: math
.
Summary: A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat K$ with unit legs $S_1$, $S_2$, a local space $\hat {\mathcal L}$ of quadratic polynomials on $\hat K$ and of parameters relating the values in the vertices and midpoints of sides of $\hat K$ to every function from $\hat {\mathcal L}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping ${\mathcal F}_h=(F_1,F_2)\in \hat {\mathcal L}\times \hat {\mathcal L}$. We explicitly describe such invertible isoparametric mappings ${\mathcal F}_h$ for which the images ${\mathcal F}_h(S_1)$, ${\mathcal F}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear. (English)
Keyword: isoparametric triangular quadratic Lagrange finite element
Keyword: invertible isoparametric mapping
Keyword: initial or boundary value problems
MSC: 65M50
MSC: 65M60
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1265.65233
idMR: MR2984613
DOI: 10.1007/s10492-012-0026-7
.
Date available: 2012-08-19T21:56:05Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142910
.
Reference: [1] Barrett, K. E.: Jacobians for isoparametric finite elements.Commun. Numer. Methods Eng. 12 (1996), 755-766. Zbl 0862.73057, 10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S
Reference: [2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.SIAM Philadelphia (2002). MR 1930132
Reference: [3] Jordan, W. B.: A.E.C. Research and Development Report KAPL-M-7112.(1970).
Reference: [4] Knabner, P., Korotov, S., Summ, G.: Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements.Finite Elem. Anal. Des. 40 (2003), 159-172 \MR 2014327. MR 2014327, 10.1016/S0168-874X(02)00196-8
Reference: [5] Knabner, P., Summ, G.: The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements.Numer. Math. 88 (2001), 661-681. Zbl 0989.65133, MR 1836875, 10.1007/PL00005454
Reference: [6] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462
Reference: [7] Lautersztajn-S, N., Samuelsson, A.: Distortion measures and inverse mapping for isoparametric 8 node plane finite elements with curved boundaries.Commun. Numer. Methods Eng. 14 (1998), 87-101. Zbl 0947.74064, MR 1610166, 10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A
Reference: [8] Meisters, G. H., Olech, C.: Locally one-to-one mappings and a classical theorem on schlicht functions.Duke Math. J. 30 (1963), 63-80. Zbl 0112.37702, MR 0143921
Reference: [9] Mitchell, A. R., Wait, R.: The Finite Element Method in Partial Differential Equations.John Wiley & Sons London (1977). Zbl 0344.35001, MR 0483547
Reference: [10] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method.Prentice Hall Englewood Cliffs (1973). Zbl 0356.65096, MR 0443377
Reference: [11] Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H.: The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements.Comput. Mech. 14 (1994), 189-199. Zbl 0804.65103, MR 1279009, 10.1007/BF00350284
.

Files

Files Size Format View
AplMat_57-2012-5_2.pdf 321.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo