Title:
|
The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements (English) |
Author:
|
Dalík, Josef |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
57 |
Issue:
|
5 |
Year:
|
2012 |
Pages:
|
445-462 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A reference triangular quadratic Lagrange finite element consists of a right triangle $\hat K$ with unit legs $S_1$, $S_2$, a local space $\hat {\mathcal L}$ of quadratic polynomials on $\hat K$ and of parameters relating the values in the vertices and midpoints of sides of $\hat K$ to every function from $\hat {\mathcal L}$. Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping ${\mathcal F}_h=(F_1,F_2)\in \hat {\mathcal L}\times \hat {\mathcal L}$. We explicitly describe such invertible isoparametric mappings ${\mathcal F}_h$ for which the images ${\mathcal F}_h(S_1)$, ${\mathcal F}_h(S_2)$ of the segments $S_1$, $S_2$ are segments, too. In this way we extend the well-known result going back to W. B. Jordan, 1970, characterizing those invertible isoparametric mappings whose restrictions to the segments $S_1$ and $S_2$ are linear. (English) |
Keyword:
|
isoparametric triangular quadratic Lagrange finite element |
Keyword:
|
invertible isoparametric mapping |
Keyword:
|
initial or boundary value problems |
MSC:
|
65M50 |
MSC:
|
65M60 |
MSC:
|
65N30 |
MSC:
|
65N50 |
idZBL:
|
Zbl 1265.65233 |
idMR:
|
MR2984613 |
DOI:
|
10.1007/s10492-012-0026-7 |
. |
Date available:
|
2012-08-19T21:56:05Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142910 |
. |
Reference:
|
[1] Barrett, K. E.: Jacobians for isoparametric finite elements.Commun. Numer. Methods Eng. 12 (1996), 755-766. Zbl 0862.73057, 10.1002/(SICI)1099-0887(199611)12:11<755::AID-CNM15>3.0.CO;2-S |
Reference:
|
[2] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.SIAM Philadelphia (2002). MR 1930132 |
Reference:
|
[3] Jordan, W. B.: A.E.C. Research and Development Report KAPL-M-7112.(1970). |
Reference:
|
[4] Knabner, P., Korotov, S., Summ, G.: Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements.Finite Elem. Anal. Des. 40 (2003), 159-172 \MR 2014327. MR 2014327, 10.1016/S0168-874X(02)00196-8 |
Reference:
|
[5] Knabner, P., Summ, G.: The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements.Numer. Math. 88 (2001), 661-681. Zbl 0989.65133, MR 1836875, 10.1007/PL00005454 |
Reference:
|
[6] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications.Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990). MR 1066462 |
Reference:
|
[7] Lautersztajn-S, N., Samuelsson, A.: Distortion measures and inverse mapping for isoparametric 8 node plane finite elements with curved boundaries.Commun. Numer. Methods Eng. 14 (1998), 87-101. Zbl 0947.74064, MR 1610166, 10.1002/(SICI)1099-0887(199802)14:2<87::AID-CNM128>3.0.CO;2-A |
Reference:
|
[8] Meisters, G. H., Olech, C.: Locally one-to-one mappings and a classical theorem on schlicht functions.Duke Math. J. 30 (1963), 63-80. Zbl 0112.37702, MR 0143921 |
Reference:
|
[9] Mitchell, A. R., Wait, R.: The Finite Element Method in Partial Differential Equations.John Wiley & Sons London (1977). Zbl 0344.35001, MR 0483547 |
Reference:
|
[10] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method.Prentice Hall Englewood Cliffs (1973). Zbl 0356.65096, MR 0443377 |
Reference:
|
[11] Yuan, K. Y., Huang, Y. S., Yang, T., Pian, T. H. H.: The inverse mapping and distortion measures for 8-node hexahedral isoparametric elements.Comput. Mech. 14 (1994), 189-199. Zbl 0804.65103, MR 1279009, 10.1007/BF00350284 |
. |