Previous |  Up |  Next

Article

Title: Different approaches to weighted voting systems based on preferential positions (English)
Author: Bystrický, Robert
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 3
Year: 2012
Pages: 536-549
Summary lang: English
.
Category: math
.
Summary: Voting systems produce an aggregated result of the individual preferences of the voters. In many cases the aggregated collective preference – the result of the voting procedure – mirrors much more than anything else the characteristics of the voting systems. Preferential voting systems work most of the time with equidistant differences between the adjacent preferences of an individual voter. They produce, as voting systems usually do, some paradoxical results under special circumstances. However, the distances between the preferences can be understood as the function of the position in the sequence of preferences and can be aggregated in different ways fulfilling the basic attributes of the voting system. This approach at least allows us to avoid the worst paradoxical situations or to design a voting system containing some special needs. (English)
Keyword: voting system
Keyword: preference
Keyword: position
MSC: 62F07
MSC: 90A05
MSC: 90A08
MSC: 90A28
idMR: MR2975805
.
Date available: 2012-08-31T16:02:13Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/142955
.
Reference: [1] Borda, J. C.: Memoire sur les elections au scrutin.Histoire de l'Academie Royale des Sciences 1784.
Reference: [2] Brams, S. J.: Mathematics and Democracy: Designing Better Voting and Fair-Division Procedures.Princeton University Press 2008. Zbl 1151.91001, MR 2382290
Reference: [3] Bystrický, R.: Voting system with various distances between preferences.In: Proc. AGOP 2011, Benevento 2011.
Reference: [4] Contreras, I.: A distance-based consensus model with flexible choice of rank-position weights.Group Decision and Negotiation 19, (2010), 441–456. 10.1007/s10726-008-9127-9
Reference: [5] Cook, W. D., Seiford, L. M.: Priority ranking and consensus formation.Management Sci. 24, (1978), 16, 1721–1732. Zbl 0486.90005, 10.1287/mnsc.24.16.1721
Reference: [6] Cook, W. D., Seiford, L. M.: On the Borda-Kendall consensus method for priority ranking problems.Management Sci. 28, (1982), 6, 621–637. Zbl 0482.90002, MR 0668270, 10.1287/mnsc.28.6.621
Reference: [7] Eckert, D., Klamler, C., Mitlöhner, J., Schlötterer, C.: A distance-based comparison of basic voting rules.Central Europ. J. Oper. Res. 14, (2006), 377–386. MR 2279338, 10.1007/s10100-006-0011-x
Reference: [8] Fishburn, P. C.: Condorcet social choice functions.SIAM J. Appl. Math. 33, (1977), 3, 469–489. Zbl 0369.90002, MR 0449470, 10.1137/0133030
Reference: [9] Kemeny, J.: Mathematics without numbers.Daedalus 88, (1959), 571–591.
Reference: [10] Kendall, M.: Rank Correlation Methods.Hafner, New York 1962. Zbl 0732.62057
Reference: [11] Nurmi, H.: Voting Paradoxes and How to Deal With Them.Springer 1999. Zbl 0943.91030, MR 1716482
Reference: [12] Saari, D.: Basic Geometry of Voting.Springer 1995. Zbl 0873.90006, MR 1410265
Reference: [13] Saari, D., Merlin, V.: A geometric examination of Kemeny's rule.Soc. Choice Welfare 17 (2000), 403–438. Zbl 1069.91538, MR 1762588, 10.1007/s003550050171
Reference: [14] Vavríková, L.: Transitive Preference Structures and Multicriteria Decision Making.Ph.D. Thesis. STU Bratislava 2011.
Reference: [15] Young, H. P.: Social choice scoring functions.SIAM J. Appl. Math. 28 (1975), 824–838. Zbl 0277.92007, MR 0371438, 10.1137/0128067
.

Files

Files Size Format View
Kybernetika_48-2012-3_14.pdf 332.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo