Previous |  Up |  Next

Article

Title: On Kurzweil-Stieltjes integral in a Banach space (English)
Author: Monteiro, Giselle A.
Author: Tvrdý, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 4
Year: 2012
Pages: 365-381
Summary lang: English
.
Category: math
.
Summary: In the paper we deal with the Kurzweil-Stieltjes integration of functions having values in a Banach space $X.$ We extend results obtained by Štefan Schwabik and complete the theory so that it will be well applicable to prove results on the continuous dependence of solutions to generalized linear differential equations in a Banach space. By Schwabik, the integral $\int _a^b {\rm d}[F]g$ exists if $F\colon [a,b]\to L(X)$ has a bounded semi-variation on $[a,b]$ and $g\colon [a,b]\to X$ is regulated on $[a,b].$ We prove that this integral has sense also if $F$ is regulated on $[a,b]$ and $g$ has a bounded semi-variation on $[a,b].$ Furthermore, the integration by parts theorem is presented under the assumptions not covered by Schwabik (2001) and Naralenkov (2004), and the substitution formula is proved. (English)
Keyword: Kurzweil-Stieltjes integral
Keyword: substitution formula
Keyword: integration-by-parts
MSC: 26A39
MSC: 28B05
idZBL: Zbl 1274.26014
idMR: MR3058269
DOI: 10.21136/MB.2012.142992
.
Date available: 2012-11-10T20:24:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142992
.
Reference: [1] Federson, M.: Substitution formulas for the Kurzweil and Henstock vector integrals.Math. Bohem. 127 (2002), 15-26. Zbl 1002.28012, MR 1895242
Reference: [2] Federson, M., Bianconi, R., Barbanti, L.: Linear Volterra integral equations as the limit of discrete systems.Acta Math. Appl. Sin. Engl. Ser. 20 (2004), 623-640. Zbl 1067.45005, MR 2173638, 10.1007/s10255-004-0200-0
Reference: [3] Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations.J. Differ. Equations 195 (2003), 313-331. Zbl 1054.34102, MR 2016815, 10.1016/S0022-0396(03)00061-5
Reference: [4] Hönig, Ch. S.: Volterra Stieltjes-Integral Equations.North Holland and American Elsevier, Mathematics Studies 16. Amsterdam and New York (1975). MR 0499969
Reference: [5] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter.Discrete Contin. Dyn. Syst. 33 (2013), 283-303. MR 2972960
Reference: [6] Naralenkov, K. M.: On integration by parts for Stieltjes-type integrals of Banach space-valued functions.Real Anal. Exch. 30 (2004/2005), 235-260. MR 2127529, 10.14321/realanalexch.30.1.0235
Reference: [7] Schwabik, Š.: Generalized Ordinary Differential Equations.World Scientific. Singapore (1992). Zbl 0781.34003, MR 1200241
Reference: [8] Schwabik, Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144
Reference: [9] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433-457. Zbl 0937.34047, MR 1722877
Reference: [10] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions.Math. Bohem. 125 (2000), 431-454. Zbl 0974.34057, MR 1802292
Reference: [11] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals.Math. Bohem. 126 (2001), 613-629. Zbl 0980.26005, MR 1970264
Reference: [12] Schwabik, Š.: Operator-valued functions of bounded semivariation and convolutions.Math. Bohem. 126 (2001), 745-777. Zbl 1001.26005, MR 1869466
Reference: [13] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.World Scientific. Singapore (2005). Zbl 1088.28008, MR 2167754
Reference: [14] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia and Reidel, Praha and Dordrecht (1979). Zbl 0417.45001, MR 0542283
Reference: [15] Tvrdý, M.: Regulated functions and the Perron-Stieltjes integral.Čas. Pěst. Mat. 114 (1989), 187-209. MR 1063765
Reference: [16] Tvrdý, M.: Differential and integral equations in the space of regulated functions.Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. Zbl 1081.34504, MR 1903190
Reference: [17] McLeod, R.M.: The Generalized Riemann Integral.Carus Monographs, Mathematical Association of America, Washington, 1980. Zbl 0486.26005, MR 0588510
.

Files

Files Size Format View
MathBohem_137-2012-4_1.pdf 284.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo