Title:
|
Positive solutions and eigenvalue intervals of a nonlinear singular fourth-order boundary value problem (English) |
Author:
|
Yao, Qingliu |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
58 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
93-110 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the classical nonlinear fourth-order two-point boundary value problem $$ \begin {cases} u^{(4)}(t)=\lambda h(t)f(t,u(t),u'(t),u''(t)),\quad 0<t<1,\\ u(0)=u'(1)=u''(0)=u'''(1)=0. \end {cases} $$ In this problem, the nonlinear term $h(t)f(t,u(t),u'(t),u''(t))$ contains the first and second derivatives of the unknown function, and the function $h(t)f(t,x,y,z)$ may be singular at $t=0$, $t=1$ and at $x=0$, $y=0$, $z=0$. By introducing suitable height functions and applying the fixed point theorem on the cone, we establish several local existence theorems on positive solutions and obtain the corresponding eigenvalue intervals. (English) |
Keyword:
|
nonlinear ordinary differential equation |
Keyword:
|
singular nonlinearity |
Keyword:
|
positive solution |
Keyword:
|
eigenvalue interval |
MSC:
|
34B08 |
MSC:
|
34B09 |
MSC:
|
34B15 |
MSC:
|
34B16 |
MSC:
|
34B18 |
MSC:
|
34B27 |
MSC:
|
34L15 |
MSC:
|
47N20 |
idZBL:
|
Zbl 1274.34076 |
idMR:
|
MR3022770 |
DOI:
|
10.1007/s10492-013-0004-8 |
. |
Date available:
|
2013-01-23T10:14:49Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143136 |
. |
Reference:
|
[1] Agarwal, R. P., O'Regan, D.: Positive solutions to superlinear singular boundary value problems.J. Comput. Appl. Math. 88 (1998), 129-147. Zbl 0902.34017, MR 1609070, 10.1016/S0377-0427(97)00205-7 |
Reference:
|
[2] Agarwal, R. P., O'Regan, D.: Multiplicity results for singular conjugate, focal, and $(N,P)$ problems.J. Differ. Equations 170 (2001), 142-156. Zbl 0978.34018, MR 1813103, 10.1006/jdeq.2000.3808 |
Reference:
|
[3] Atanackovic, T. M.: Stability Theory of Elastic Rods. Series on Stability, Vibration and Control of Systems, Series A.World Scientific Singapore (1997). |
Reference:
|
[4] Bai, Z., Wang, H.: On positive solutions of some nonlinear fourth-order beam equations.J. Math. Anal. Appl. 270 (2002), 357-368. Zbl 1006.34023, MR 1915704, 10.1016/S0022-247X(02)00071-9 |
Reference:
|
[5] Bai, Z.: The upper and lower solution method for some fourth-order boundary value problems.Nonlinear Anal., Theory Methods Appl. 67 (2007), 1704-1709. Zbl 1122.34010, MR 2326022, 10.1016/j.na.2006.08.009 |
Reference:
|
[6] Dunninger, D. R.: Multiplicity of positive solutions for a nonlinear fourth order equation.Ann. Pol. Math. 77 (2001), 161-168. Zbl 0989.34014, MR 1869312, 10.4064/ap77-2-3 |
Reference:
|
[7] Elgindi, M. B. M., Guan, Z.: On the global solvability of a class of fourth-order nonlinear boundary value problems.Int. J. Math. Math. Sci. 20 (1997), 257-261. Zbl 0913.34020, MR 1444725, 10.1155/S0161171297000343 |
Reference:
|
[8] Feng, H., Ji, D., Ge, W.: Existence and uniqueness of solutions for a fourth-order boundary value problem.Nonlinear Anal., Theory Methods Appl. 70 (2009), 3561-3566. Zbl 1169.34308, MR 2502764, 10.1016/j.na.2008.07.013 |
Reference:
|
[9] Graef, J. R., Yang, B.: Existence and nonexistence of positive solutions of fourth order nonlinear boundary value problems.Appl. Anal. 74 (2000), 201-214. Zbl 1031.34025, MR 1742276, 10.1080/00036810008840810 |
Reference:
|
[10] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering, 5.Academic Press Boston (1988). MR 0959889 |
Reference:
|
[11] Gupta, C. P.: Existence and uniqueness theorems for the bending of an elastic beam equation.Appl. Anal. 26 (1988), 289-304. Zbl 0611.34015, MR 0922976, 10.1080/00036818808839715 |
Reference:
|
[12] Henderson, J., Wang, H.: Positive solutions for nonlinear eigenvalue problems.J. Math. Anal. Appl. 208 (1997), 252-259. Zbl 0876.34023, MR 1440355, 10.1006/jmaa.1997.5334 |
Reference:
|
[13] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of The Theory of Functions of a Real Variable. 3rd printing.Springer Berlin, Heidelberg, New York (1975). Zbl 0307.28001, MR 0367121 |
Reference:
|
[14] Liu, B.: Positive solutions of fourth-order two point boundary value problems.Appl. Math. Comput. 148 (2004), 407-420. Zbl 1039.34018, MR 2015382, 10.1016/S0096-3003(02)00857-3 |
Reference:
|
[15] Ma, R., Ma, Q.: Multiplicity results for a fourth-order boundary value problem.Appl. Math. Mech., Engl. Ed. 16 (1995), 961-969. Zbl 0836.73032, MR 1365596, 10.1007/BF02538837 |
Reference:
|
[16] Marcos, J., Lorca, S., Ubilla, P.: Multiplicity of solutions for a class of non-homogeneous fourth-order boundary value problems.Appl. Math. Lett. 21 (2008), 279-286. Zbl 1169.34317, MR 2433742, 10.1016/j.aml.2007.02.025 |
Reference:
|
[17] Meehan, M., O'Regan, D.: Positive solutions of singular integral equations.J. Integral Equations Appl. 12 (2000), 271-280. Zbl 0988.45004, MR 1810743, 10.1216/jiea/1020282208 |
Reference:
|
[18] Staněk, S.: Positive solutions of singular Dirichlet boundary value problems with time and space singularities.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 4893-4905. Zbl 1192.34027, MR 2548721, 10.1016/j.na.2009.03.043 |
Reference:
|
[19] Wei, Z.: A class of fourth order singular boundary value problems.Appl. Math. Comput. 153 (2004), 865-884. Zbl 1057.34006, MR 2066157, 10.1016/S0096-3003(03)00683-0 |
Reference:
|
[20] Yao, Q.: Positive solutions of nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 1570-1580. MR 2424530, 10.1016/j.na.2007.07.002 |
Reference:
|
[21] Yao, Q.: Successively iterative technique of a classical elastic beam equation with Carathéodory nonlinearity.Acta Appl. Math. 108 (2009), 385-394. Zbl 1188.34013, MR 2551480, 10.1007/s10440-008-9317-0 |
Reference:
|
[22] Yao, Q.: Local existence of multiple positive solutions to a singular cantilever beam equation.J. Math. Anal. Appl. 363 (2010), 138-154. Zbl 1191.34031, MR 2559048, 10.1016/j.jmaa.2009.07.043 |
. |