[1] Doubek, M., Markl, M., Zima, P.:
Deformation theory (lecture notes). Arch. Math. (Brno), 43, 5, 2007, 333-371,
MR 2381782 |
Zbl 1199.13015
[2] Dufour, J.-P.:
Formes normales de structures de Poisson. Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991).
MR 1156537
[3] Godbillon, C.:
Géométrie différentielle et mécanique analytique. 1969, Hermann Editeurs. Collection Méthodes,
MR 0242081
[4] Goze, M., Remm, E.:
2-dimensional algebras. Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA].
MR 2845269
[5] Goze, M., Remm, E.: Contact structures on Lie algebras. 2012, Preprint Mulhouse,
[8] Goze, N.: Poisson structures associated with rigid Lie algebras. Journal of Generalized Lie theory and Applications, 10, 2010,
[10] Kontsevich, M.:
Deformation quantization of Poisson manifold I. arXiv:q-alg/9709040.
MR 2062626
[11] Lichnerowicz, A.:
Les variétés de Poisson et leurs algèbres de Lie associées. (French). J. Differential Geometry, 12, 2, 1977, 253-300,
MR 0501133
[12] Loday, J.-L.: Algebraic operads. 2011, Preprint IRMA Strasbourg,
[14] Markl, M., Remm, E.: (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities. arXiv:0907.1505.
[15] Markl, M., Shnider, S., Stasheff, J.:
Operads in algebra, topology and physics. 2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI,
MR 1898414 |
Zbl 1017.18001
[17] Remm, E.:
On the NonKoszulity of ternary partially associative Operads. Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363,
MR 2752979
[19] Skosyrskii, V. G.:
Noncommutative Jordan algebras a under the condition that $A^{(+)}$ is associative. Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157,
MR 1156755
[20] Vaisman, Izu:
Lectures on the geometry of Poisson manifolds. 1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp.
MR 1269545 |
Zbl 0810.53019