Previous |  Up |  Next

Article

Keywords:
Poisson algebras; deformations; operads; cohomology
Summary:
Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.
References:
[1] Doubek, M., Markl, M., Zima, P.: Deformation theory (lecture notes). Arch. Math. (Brno), 43, 5, 2007, 333-371, MR 2381782 | Zbl 1199.13015
[2] Dufour, J.-P.: Formes normales de structures de Poisson. Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991). MR 1156537
[3] Godbillon, C.: Géométrie différentielle et mécanique analytique. 1969, Hermann Editeurs. Collection Méthodes, MR 0242081
[4] Goze, M., Remm, E.: 2-dimensional algebras. Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA]. MR 2845269
[5] Goze, M., Remm, E.: Contact structures on Lie algebras. 2012, Preprint Mulhouse,
[6] Goze, M., Remm, E.: Valued deformations of algebras. J. Algebra Appl, 3, 4, 2004, 345-365, DOI 10.1142/S0219498804000915 | MR 2114414 | Zbl 1062.17010
[7] Goze, M., Remm, E.: Poisson algebras in terms of nonassociative algebras. J. Algebra, 320, 1, 2008, 294-317, DOI 10.1016/j.jalgebra.2008.01.024 | MR 2417990
[8] Goze, N.: Poisson structures associated with rigid Lie algebras. Journal of Generalized Lie theory and Applications, 10, 2010,
[9] Goze, N., Remm, E.: Dimension theorem for free ternary partially associative algebras and applications. J. Algebra, 348, 2011, 14-36, DOI 10.1016/j.jalgebra.2011.09.011 | MR 2852229
[10] Kontsevich, M.: Deformation quantization of Poisson manifold I. arXiv:q-alg/9709040. MR 2062626
[11] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. (French). J. Differential Geometry, 12, 2, 1977, 253-300, MR 0501133
[12] Loday, J.-L.: Algebraic operads. 2011, Preprint IRMA Strasbourg,
[13] Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra, 299, 1, 2006, 171-189, DOI 10.1016/j.jalgebra.2005.09.018 | MR 2225770 | Zbl 1101.18004
[14] Markl, M., Remm, E.: (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities. arXiv:0907.1505.
[15] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. 2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, MR 1898414 | Zbl 1017.18001
[16] Pichereau, A.: Poisson (co)homology and isolated singularities. J. Algebra, 299, 2, 2006, 747-777, DOI 10.1016/j.jalgebra.2005.10.029 | MR 2228339 | Zbl 1113.17009
[17] Remm, E.: On the NonKoszulity of ternary partially associative Operads. Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363, MR 2752979
[18] Remm, E., Goze, M.: On algebras obtained by tensor product. J. Algebra, 327, 2011, 13-30, DOI 10.1016/j.jalgebra.2010.10.035 | MR 2746027 | Zbl 1228.18007
[19] Skosyrskii, V. G.: Noncommutative Jordan algebras a under the condition that $A^{(+)}$ is associative. Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157, MR 1156755
[20] Vaisman, Izu: Lectures on the geometry of Poisson manifolds. 1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp. MR 1269545 | Zbl 0810.53019
Partner of
EuDML logo