Previous |  Up |  Next

Article

Title: Pseudo-homotopies of the pseudo-arc (English)
Author: Illanes, Alejandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 629-635
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a continuum. Two maps $g,h:X\rightarrow X$ are said to be pseudo-homotopic provided that there exist a continuum $C$, points $s,t\in C$ and a continuous function $H:X\times C\rightarrow X$ such that for each $x\in X$, $H(x,s)=g(x)$ and $H(x,t)=h(x)$. In this paper we prove that if $P$ is the pseudo-arc, $g$ is one-to-one and $h$ is pseudo-homotopic to $g$, then $g=h$. This theorem generalizes previous results by W. Lewis and M. Sobolewski. (English)
Keyword: pseudo-arc
Keyword: pseudo-contractible
Keyword: pseudo-homotopy
MSC: 54B10
MSC: 54F15
MSC: 54F50
idMR: MR3016431
.
Date available: 2013-03-02T13:49:01Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143195
.
Reference: [1] Chacón-Tirado M.E., Illanes A., Leonel R.: Factorwise rigidity of embeddings of the products of pseudo-arcs.Colloq. Math. 128 (2012), 7–14. 10.4064/cm128-1-2
Reference: [2] Illanes A., Nadler S.B., Jr.: Hyperspaces Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York, Basel, 1999. Zbl 0933.54009, MR 1670250
Reference: [3] Holsztyński W.: Universal mappings and fixed point theorems.Bull. Acad. Pol. 15 (1967), 433–438. Zbl 0156.43603, MR 0221493
Reference: [4] Holsztyński W.: Universality of the product mappings into products of $I^{n}$ and snake-like spaces.Fund. Math. 64 (1969), 147–155. MR 0244936
Reference: [5] Kuperberg W.: Continua with the Houston Problem Book.H. Cook, W.T. Ingram, K.T. Kuperberg, A. Lelek and P. Minc (Eds.), Lecture Notes in Pure and Applied Mathematics, 170, Marcel Dekker, New York, 1995, pp. 372–373. Zbl 0813.00008, MR 1326830
Reference: [6] Lewis W.: Pseudo-arcs and connectedness in homeomorphism groups.Proc. Amer. Math. Soc. 87 (1983), no. 4, 745–748. Zbl 0525.54024, MR 0687655, 10.1090/S0002-9939-1983-0687655-1
Reference: [7] Lewis W.: The pseudo-arc.Bol. Soc. Mat. Mexicana (3) 5 (1999), 25–77. Zbl 1211.54047, MR 1692467
Reference: [8] Lewis W.: Indecomposable Continua.Open Problems in Topology II, 304–318, edited by E. Pearl, Elsevier, 2007. Zbl 0890.54009
Reference: [9] Nadler S.B., Jr.: Continuum Theory. An Introduction.Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0757.54009, MR 1192552
Reference: [10] Sobolewski M.: Pseudo-contractibility of chainable continua.Topology Appl. 154 (2007), 2983–2987. Zbl 1129.54020, MR 2355883, 10.1016/j.topol.2007.06.010
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_10.pdf 240.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo