Previous |  Up |  Next

Article

Title: Reference points based recursive approximation (English)
Author: Révayová, Martina
Author: Török, Csaba
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 60-72
Summary lang: English
.
Category: math
.
Summary: The paper studies polynomial approximation models with a new type of constraints that enable to get estimates with significant properties. Recently we enhanced a representation of polynomials based on three reference points. Here we propose a two-part cubic smoothing scheme that leverages this representation. The presence of these points in the model has several consequences. The most important one is the fact that by appropriate location of the reference points the resulting approximant of two successively assessed neighboring approximants will be smooth. We also show that the considered models provide estimates with appropriate statistical properties such as consistency and asymptotic normality. (English)
Keyword: approximation model
Keyword: consistency
Keyword: asymptotic normality
MSC: 41A10
MSC: 62-07
MSC: 62F10
MSC: 62J05
MSC: 62L12
MSC: 65D05
MSC: 65D07
MSC: 65D10
.
Date available: 2013-03-05T15:06:40Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143240
.
Reference: [1] Dikoussar, N. D.: Adaptive projective filters for track finding..Comput. Phys. Commun. 79 (1994), 39-51. 10.1016/0010-4655(94)90228-3
Reference: [2] Dikoussar, N. D.: Kusochno-kubicheskoje priblizhenije I sglazhivanije krivich v rezhime adaptacii..Comm. JINR, P10-99-168, Dubna 1999.
Reference: [3] Dikoussar, N. D., Török, Cs.: Automatic knot finding for piecewise-cubic approximation..Mat. Model. T-17 (2006), 3. Zbl 1099.65014, MR 2255951
Reference: [4] Dikoussar, N. D., Török, Cs.: Approximation with DPT..Comput. Math. Appl. 38 (1999), 211-220. MR 1718884
Reference: [5] Haykin, S.: Adaptive Filter Theory..Prentice Hall, 2002 Zbl 0723.93070
Reference: [6] Nadaraya, E. A.: On estimating regression..Theory Probab. Appl. 9 (1964 ), 141-142. Zbl 0136.40902
Reference: [7] Reinsch, Ch. H.: Smoothing by spline functions..Numer. Math. 10 (1967), 177-183. Zbl 1248.65020, MR 0295532, 10.1007/BF02162161
Reference: [8] Révayová, M., Török, Cs.: Piecewise approximation and neural networks..Kybernetika 43 (2007), 4, 547-559. Zbl 1145.68495, MR 2377932
Reference: [9] Ripley, B. D.: Pattern Recognision and Neural Networks..Cambridge University Press, 1996. MR 1438788
Reference: [10] Török, Cs.: 4-point transforms and approximation..Comput. Phys. Commun. 125 (2000), 154-166. Zbl 0976.65011, 10.1016/S0010-4655(99)00483-X
Reference: [11] Wasan, M. T.: Stochastic Approximation..Cambridge University Press, 2004. Zbl 0271.62112, MR 0247712
.

Files

Files Size Format View
Kybernetika_49-2013-1_5.pdf 332.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo