Previous |  Up |  Next

Article

Title: Linear fractional program under interval and ellipsoidal uncertainty (English)
Author: Salahi, Maziar
Author: Fallahi, Saeed
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 181-187
Summary lang: English
.
Category: math
.
Summary: In this paper, the robust counterpart of the linear fractional programming problem under linear inequality constraints with the interval and ellipsoidal uncertainty sets is studied. It is shown that the robust counterpart under interval uncertainty is equivalent to a larger linear fractional program, however under ellipsoidal uncertainty it is equivalent to a linear fractional program with both linear and second order cone constraints. In addition, for each case we have studied the dual problems associated with the robust counterparts. It is shown that in both cases, either interval or ellipsoidal uncertainty, the dual of robust counterpart is equal to the optimistic counterpart of dual problem. (English)
Keyword: linear fractional program
Keyword: robust optimization
Keyword: uncertainty
Keyword: second order cone
MSC: 90C05
MSC: 90C25
MSC: 90C32
.
Date available: 2013-03-05T15:16:51Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143248
.
Reference: [1] Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best..Oper. Res. Lett. 37 (2009), 1-6. Zbl 1154.90614, MR 2488072, 10.1016/j.orl.2008.09.010
Reference: [2] Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data..Math. Programming 88 (2000), 411-424. Zbl 0964.90025, MR 1782149, 10.1007/PL00011380
Reference: [3] Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs..Oper. Res. Lett. 25 (1999), 1-13. Zbl 1089.90037, MR 1702364, 10.1016/S0167-6377(99)00016-4
Reference: [4] Ben-Tal, A., Nemirovski, A.: Robust convex optimization..Math. Oper. Res. 23 (1998), 769-805. Zbl 1135.90046, MR 1662410, 10.1287/moor.23.4.769
Reference: [5] Charnes, A., Cooper, W. W.: Programming with linear fractional functional..Naval Res. Logist. Quart. 9 (1962), 181-186. MR 0152370, 10.1002/nav.3800090303
Reference: [6] Chinchuluun, A., Yuan, D., Pardalos, P. M: Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity..Ann. Oper. Res. 154 (2007), 133-147. Zbl 1191.90080, MR 2332825, 10.1007/s10479-007-0180-6
Reference: [7] Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms..Oper. Res. Lett. 32 (2004), 510-516. Zbl 1054.90046, MR 2077451, 10.1016/j.orl.2003.12.007
Reference: [8] Bitran, G. R., Novaes, A. J.: Linear programming with a fractional objective function..Oper. Res. 21 (1973), 22-29. Zbl 0259.90046, MR 0368741, 10.1287/opre.21.1.22
Reference: [9] Pardalos, P. M., Phillips, A.: Global optimization of fractional programs..J. Global Optim. 1 (1991), 173-182. Zbl 0748.90068, MR 1263589, 10.1007/BF00119990
Reference: [10] Schaible, S.: Fractional programming a recent survey, Generalized convexity, generalized monotonicity, optimality conditions and duality in scalar and vector optimization..J. Statist. Management Syst. 5 (2002), 63-86. MR 1993086
Reference: [11] Schaible, S.: Parameter-free convex equivalent and dual programs of fractional programming problems..Oper. Res. 18 (1974), 187-196. Zbl 0291.90067, MR 0351464
Reference: [12] Gómez, T., Hernández, M., León, M. A., Caballero, R.: A forest planning problem solved via a linear fractional goal programming model..Forest Ecol. Management 227 (2006), 79-88.
Reference: [13] Jeyakumar, V., Li, G. Y.: Robust duality for fractional programming problems with constraint-wise data uncertainty..J. Optim. Theory Appl. 151 (2011), 292-303. Zbl 1242.90252, MR 2852402, 10.1007/s10957-011-9896-1
.

Files

Files Size Format View
Kybernetika_49-2013-1_13.pdf 224.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo