Previous |  Up |  Next

Article

Title: A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces (English)
Author: Arhangel'skii, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 121-139
Summary lang: English
.
Category: math
.
Summary: The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\leq 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel'skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. {220} (2013), 71--81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable. (English)
Keyword: metrizable
Keyword: Lindelöf $p$-space
Keyword: Lindelöf $\Sigma $-space
Keyword: remainder
Keyword: compactification
Keyword: $\sigma $-space
Keyword: countable network
Keyword: countable type
Keyword: perfect mapping
MSC: 54A25
MSC: 54B05
idZBL: Zbl 06221258
idMR: MR3067699
.
Date available: 2013-06-25T12:45:55Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143265
.
Reference: [1] Arhangel'skii A.V.: External bases of sets lying in bicompacta.Dokl. Akad. Nauk SSSR 132 (1960), 495–496. English translation: Soviet Math. Dokl. 1 (1960), 573–574. MR 0119188
Reference: [2] Arhangel'skii A.V.: On a class of spaces containing all metric spaces and all locally bicompact spaces.Dokl. Akad. Nauk SSSR 151 (1963), 751–754. English translation: Soviet Math. Dokl. 4 (1963), 1051–1055. MR 0152988
Reference: [3] Arhangel'skii A.V.: Bicompact sets and the topology of spaces.Dokl. Akad. Nauk SSSR 150 (1963), 9–12. MR 0150733
Reference: [4] Arhangel'skii A.V.: Bicompact sets and the topology of spaces.Trudy Moskov. Mat. Obsch. 13 (1965), 3–55 (in Russian). English translation: Trans. Mosc. Math. Soc. 13 (1965), 1–62. MR 0195046
Reference: [5] Arhangel'skii A.V.: Perfect maps and injections.Dokl. Akad. Nauk SSSR 176 (1967), 983–986. English translation: Soviet Math. Dokl. 8 (1967), 1217–1220. MR 0238276
Reference: [6] Arhangel'skii A.V.: A characterization of very $k$-spaces.Czechoslovak Math. J. 18 (1968), 392–395. MR 0229194
Reference: [7] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67(109) (1965), 55–88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889
Reference: [8] Arhangel'skii A.V.: On hereditary properties.General Topology and Appl. 3 (1973), no. 1, 39–46. MR 0319142, 10.1016/0016-660X(73)90028-7
Reference: [9] Arhangelskii A.V.: Relations among the invariants of topological groups and their subspaces.Uspekhi Mat. Nauk 35 (1980), no. 3, 3–22 (in Russian). English translation: Russian Math. Surveys 35 (1980), no. 3, 1–23. MR 0580615
Reference: [10] A.V. Arhangel'skii: Remainders in compactifications and generalized metrizability properties.Topology and Appl. 150 (2005), 79-90. Zbl 1075.54012, MR 2133669, 10.1016/j.topol.2004.10.015
Reference: [11] Arhangel'skii A.V.: Two types of remainders of topological groups.Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119–126. MR 2433629
Reference: [12] Arhangel'skii A.V.: Remainders of metrizable spaces and a generalization of Lindelöf $\Sigma $-spaces.Fund. Math. 215 (2011), 87–100. Zbl 1236.54006, MR 2851703, 10.4064/fm215-1-5
Reference: [13] Arhangel'skii A.V.: Remainders of metrizable and close to metrizable spaces.Fund. Math. 220 (2013), 71–81. 10.4064/fm220-1-4
Reference: [14] Arhangel'skii A.V., Bella A.: Cardinal invariants in remainders and variations of tightness.Proc. Amer. Math. Soc. 119 (1993), no. 3, 947–954. MR 1185277, 10.2307/2160537
Reference: [15] Arhangel'skii A.V., Choban M.M.: Some generalizations of the concept of a $p$-space.Topology Appl. 158 (2011), 1381–1389. Zbl 1229.54036, MR 2812490, 10.1016/j.topol.2011.05.012
Reference: [16] Arhangel'skii A.V., Holsztynski W.: Sur les reseaux dans les espaces topologiques.Bull. Acad. Polon. Sci., Ser. Math. 11 (1963), 493–497 (in French). MR 0159300
Reference: [17] Burke D.K.: Covering properties.in: Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984, pp. 347–422. Zbl 0569.54022, MR 0776628
Reference: [18] van Douwen E.K., Tall F., Weiss W.: Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH.Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl 0356.54020, MR 0514998
Reference: [19] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [20] Grabner G., Szymanski A.: Spaces hereditarily of $\kappa $-type and point $\kappa $-type.Rend. Circ. Mat. Palermo (2) 42 (1993), 382–390. Zbl 0802.54019, MR 1283352, 10.1007/BF02844629
Reference: [21] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1958), 83–106. Zbl 0081.38604, MR 0096196, 10.1215/S0012-7094-58-02509-2
Reference: [22] Hodel R.E.: A theorem of Arhangel'skii concerning Lindelöf $p$-spaces.Canad. J. Math. 27 (1975), no. 2, 459–468. Zbl 0301.54010, MR 0375205, 10.4153/CJM-1975-054-8
Reference: [23] Nagami K.: $\Sigma $-spaces.Fund. Math. 61 (1969), 169–192. Zbl 0181.50701, MR 0257963
Reference: [24] Popov V.: A perfect map needn't preserve a $G_\delta $-diagonal.General Topology and Appl. 7 (1977), 31–33. MR 0431093, 10.1016/0016-660X(77)90004-6
Reference: [25] Pytkeev E.G.: Hereditarily plumed spaces.Math. Notes 28 (1980), no. 4, 603–618. Zbl 0462.54018, MR 0594378, 10.1007/BF01140139
Reference: [26] Velichko N.V.: Theory of resolvable spaces.Mat. Zametki 19 (1976), no. 1, 19–114. English translation: Math. Notes 19 (1976), no. 1, 65–68. Zbl 0346.54007
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_2.pdf 299.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo