Previous |  Up |  Next

Article

MSC: 35B65, 35J25
Keywords:
elliptic transmission problem; regularity theory; Lipschitz continuity
Summary:
We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that the second weak derivatives remain integrable to a certain power less than two.
References:
[1] Bacuta, C., Mazzucato, A. L., Nistor, V., Zikatanov, L.: Interface and mixed boundary value problems on $n$-dimensional polyhedral domains. Doc. Math., J. DMV 15 687-745 (2010). MR 2735986 | Zbl 1207.35117
[2] Elschner, J., Rehberg, J., Schmidt, G.: Optimal regularity for elliptic transmission problems including $C^1$ interfaces. Interfaces Free Bound. 9 233-252 (2007). MR 2314060
[3] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed. Classics in Mathematics. Springer, Berlin (2001). MR 1814364 | Zbl 1042.35002
[4] Haller-Dintelmann, R., Kaiser, H.-C., Rehberg, J.: Elliptic model problems including mixed boundary conditions and material heterogeneities. J. Math. Pures Appl. (9) 89 25-48 (2008). MR 2378088 | Zbl 1132.35022
[5] Kufner, A., John, O., Fučík, S.: Function Spaces. Academia, Praha (1977). MR 0482102
[6] Ladyzhenskaya, O. A., Ural'tseva, N. N.: Linear and Quasilinear Elliptic Equations. Mathematics in Science and Engeneering 46. Academic Press. New York (1968). MR 0244627 | Zbl 0177.37404
[7] Ladyzhenskaya, O. A., Rivkind, V. Ya., Ural'tseva, N. N.: The classical solvability of diffraction problems. Tr. Mat. Inst. Steklova 92 116-146 (1966), Russian. MR 0211050 | Zbl 0165.11802
[8] Ladyzhenskaya, O. A., Solonnikov, V. A.: Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid. Tr. Mat. Inst. Steklova 59 115-173 (1960), Russian. MR 0170130
[9] Li, Y. Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153 91-151 (2000). DOI 10.1007/s002050000082 | MR 1770682 | Zbl 0958.35060
[10] Lions, J. L., Magenes, E.: Problèmes aux limites non homogènes. IV. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 15 311-326 (1961), French. MR 0140938 | Zbl 0115.31302
[11] Lions, J. L., Magenes, E.: Inhomogenous Boundary Problems and Applications. Vol. 1, 2. Dunod, Paris (1968), French.
[12] Mercier, D.: Minimal regularity of the solutions of some transmission problems. Math. Methods Appl. Sci. 26 321-348 (2003). DOI 10.1002/mma.356 | MR 1953299 | Zbl 1035.35035
[13] Nicaise, S., Sändig, A.-M.: Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation. Math. Models Methods Appl. Sci. 9 855-898 (1999). DOI 10.1142/S0218202599000403 | MR 1702865 | Zbl 0958.35023
[14] Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 176-201 (1998). DOI 10.1006/jfan.1997.3158 | MR 1600081
[15] Stampacchia, G.: Su un probleme relativo alle equazioni di tipo ellitico del secondo ordine. Ricerche Mat. 5 1-24 (1956), Italian. MR 0082607
[16] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 189-257 (1965), French Colloques Int. Centre Nat. Rech. Sci. 146 189-258 (1965). DOI 10.5802/aif.204 | MR 0192177 | Zbl 0151.15401
[17] Troianiello, G. M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987). MR 1094820 | Zbl 0655.35002
Partner of
EuDML logo