Previous |  Up |  Next

Article

Title: A remark on almost umbilical hypersurfaces (English)
Author: Roth, Julien
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 1
Year: 2013
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces. (English)
Keyword: hypersurfaces
Keyword: rigidity
Keyword: pinching
Keyword: Ricci curvature
Keyword: umbilicity tensor
Keyword: higher order mean curvatures
Keyword: $\theta $-quasi-isometry
MSC: 53A07
MSC: 53A10
MSC: 53C20
MSC: 53C24
idZBL: Zbl 06321142
idMR: MR3073010
DOI: 10.5817/AM2013-1-1
.
Date available: 2013-05-28T13:23:47Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143292
.
Reference: [1] Aubry, E.: Finiteness of $\pi _1$ and geometric inequalities in almost positive Ricci curvature.Ann. Sci. École Norm. Sup. (4) 40 (4) (2007), 6757–695. Zbl 1141.53034, MR 2191529
Reference: [2] Colbois, B., Grosjean, J. F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space.Comment. Math. Helv. 82 (2007), 175–195. Zbl 1112.53003, MR 2296061, 10.4171/CMH/88
Reference: [3] Fialkow, A.: Hypersurfaces of a space of constant curvature.Ann. of Math. (2) 39 (1938), 762–783. Zbl 0020.06601, MR 1503435, 10.2307/1968462
Reference: [4] Grosjean, J. F.: Upper bounds for the first eigenvalue of the Laplacian on compact manifolds.Pacific J. Math. 206 (1) (2002), 93–111. MR 1924820, 10.2140/pjm.2002.206.93
Reference: [5] Grosjean, J. F., Roth, J.: Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces.Math. Z. 271 (1) (2012), 469–488. Zbl 1243.53071, MR 2917153, 10.1007/s00209-011-0872-0
Reference: [6] Hoffman, D., Spruck, D.: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Comm. Pure Appl. Math. 27 (1974), 715–727. Zbl 0295.53025, MR 0365424, 10.1002/cpa.3160270601
Reference: [7] Reilly, R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space.Comment. Math. Helv. 52 (1977), 525–533. Zbl 0382.53038, MR 0482597, 10.1007/BF02567385
Reference: [8] Roth, J.: Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space.Ann. Global Anal. Geom. 33 (3) (2008), 293–306. MR 2390836, 10.1007/s10455-007-9086-4
Reference: [9] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds.Kyushu J. Math. 48 (2) (1994), 291–306. Zbl 0826.53045, MR 1294532, 10.2206/kyushujm.48.291
Reference: [10] Shiohama, K., Xu, H.: Rigidity and sphere theorems for submanifolds II.Kyushu J. Math. 54 (1) (2000), 103–109. Zbl 1005.53028, MR 1762795, 10.2206/kyushujm.54.103
Reference: [11] Thomas, T. Y.: On closed space of constant mean curvature.Amer. J. Math. 58 (1936), 702–704. MR 1507192, 10.2307/2371240
Reference: [12] Vlachos, T.: Almost-Einstein hypersurfaces in the Euclidean space.Illinois J. Math. 53 (4) (2009), 1221–1235. Zbl 1213.53072, MR 2741186
.

Files

Files Size Format View
ArchMathRetro_049-2013-1_1.pdf 449.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo