Previous |  Up |  Next

Article

Title: Some generalized comparison results in Finsler geometry and their applications (English)
Author: Zhu, Yecheng
Author: Hu, Wenming
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 1
Year: 2013
Pages: 65-78
Summary lang: English
.
Category: math
.
Summary: In this paper, we generalize the Hessian comparison theorems and Laplacian comparison theorems described in [16, 18], then give some applications under various curvature conditions. (English)
Keyword: comparison theorem
Keyword: Finsler geometry
Keyword: distance function
Keyword: first eigenvalue
MSC: 53B40
MSC: 53C60
idZBL: Zbl 06321149
idMR: MR3073017
DOI: 10.5817/AM2013-1-65
.
Date available: 2013-05-28T13:32:56Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143301
.
Reference: [1] Astola, L., Jalba, A., Balmashnova, E., Florack, L.: Finsler streamline tracking with single tensor orientation distribution function for high angular resolution diffusion imaging.J. Math. Imaging Vision 41 (2011), 170–181. Zbl 1255.68185, MR 2843892, 10.1007/s10851-011-0264-4
Reference: [2] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann–Finsler Geometry.Springer, New York, 2000. Zbl 0954.53001, MR 1747675
Reference: [3] Beil, R. G.: Finsler geometry and relativistic field theory.Found. Phys. 33 (2003), 1107–1127. MR 2012259, 10.1023/A:1025689902340
Reference: [4] Busemann, H.: Intrinsic Area.Ann. Math. 48 (1947), 234–267. MR 0020626
Reference: [5] Chen, Q., Xin, Y. L.: A generalized maximum principle and its applications in geometry.Amer. J. Math. 114 (1992), 335–366. Zbl 0776.53032, MR 1156569, 10.2307/2374707
Reference: [6] Chen, X. Y., Shen, Z. M.: A comparison theorem on the Ricci curvature in projective geometry.Ann. Glob. Anal. Geom. 23 (2003), 14–155. Zbl 1043.53059, MR 1961373
Reference: [7] Chern, S. S.: Local equivalence and Euclidean connections in Finsler space.Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95–121. MR 0031812
Reference: [8] Kasue, A.: On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold.Ann. Sci. Ecole. Norm. Sup. 17 (1984), 31–44. Zbl 0553.53026, MR 0744066
Reference: [9] Kim, C. W., Min, K.: Finsler metrics with positive constant flag curvature.Ann. Glob. Anal. Geom. 92 (2009), 70–79. Zbl 1170.53055, MR 2471989
Reference: [10] Ohta, S.: Finsler interpolation inequalities.Calc. Var. Partial Differential Equations 36 (2009), 211–249. Zbl 1175.49044, MR 2546027, 10.1007/s00526-009-0227-4
Reference: [11] Ohta, S.: Uniform convexity and smoothness, and their applications in Finsler geometry.Math. Ann. 343 (2009), 669–699. Zbl 1160.53033, MR 2480707, 10.1007/s00208-008-0286-4
Reference: [12] Renesse, M.: Heat kernel comparison on Alexandrov spaces with curvature bounded below.Potential Anal. 21 (2004), 151–176. Zbl 1058.60063, MR 2058031, 10.1023/B:POTA.0000025376.45065.80
Reference: [13] Shen, Z.: Volume comparision and its application in Riemann–Finsler geometry.Adv. Math. 128 (1997), 306–328. MR 1454401, 10.1006/aima.1997.1630
Reference: [14] Shen, Z.: The Non-linear Laplacian Finsler Manifolds.The Theory of Finslerian Laplacians and Applications (Antonelli, P. L., Lackey, B. C., eds.), Kluwer Acad. Publ., Dordrecht, 1998, pp. 187–198. MR 1677366
Reference: [15] Shen, Z.: Lectures on Finsler Geometry.World Scientific, Singapare, 2001. Zbl 0974.53002, MR 1845637
Reference: [16] Shen, Z.: Curvature, distance and volume in Finsler geometry.IHES 311 (2003), 549–576.
Reference: [17] Wu, B. Y.: Some rigidity theorems for locally symmetrical Finsler manifolds.J. Geom. Phys. 58 (2008), 923–930. Zbl 1142.53328, MR 2426249, 10.1016/j.geomphys.2008.02.009
Reference: [18] Wu, B. Y., Xin, Y. L.: Comparision theorem in Finsler geometry and their applications.Math. Ann. 337 (2007), 177–196.
.

Files

Files Size Format View
ArchMathRetro_049-2013-1_8.pdf 494.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo