Previous |  Up |  Next

Article

Title: Statistical convergence of a sequence of random variables and limit theorems (English)
Author: Ghosal, Sanjoy
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 4
Year: 2013
Pages: 423-437
Summary lang: English
.
Category: math
.
Summary: In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order $r$ and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied. (English)
Keyword: asymptotic density
Keyword: random variable
Keyword: statistical convergence
Keyword: statistical convergence in probability
Keyword: statistical convergence in mean of order $r$
Keyword: statistical convergence in distribution
MSC: 40A35
MSC: 40C05
MSC: 60Fxx
MSC: 60Gxx
idZBL: Zbl 06221239
idMR: MR3083522
DOI: 10.1007/s10492-013-0021-7
.
Date available: 2013-07-18T15:18:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143339
.
Reference: [1] Balcerzak, M., Dems, K., Komisarski, A.: Statistical convergence and ideal convergence for sequences of functions.J. Math. Anal. Appl. 328 (2007), 715-729. Zbl 1119.40002, MR 2285579, 10.1016/j.jmaa.2006.05.040
Reference: [2] Bunimovich, L. A., Sinai, Ya. G.: Statistical properties of Lorentz gas with periodic configuration of scatterers.Commun. Math. Phys. 78 (1981), 479-497. Zbl 0459.60099, MR 0606459, 10.1007/BF02046760
Reference: [3] Erdős, P., Tenenbaum, G.: On densities of certain sequences of integers.Proc. Lond. Math. Soc., III. Ser. 59 (1989), 417-438 French. MR 1014865
Reference: [4] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244 French. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [5] Fridy, J. A.: On statistical convergence.Analysis 5 (1985), 301-313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301
Reference: [6] Fridy, J. A.: Statistical limit points.Proc. Am. Math. Soc. 118 (1993), 1187-1192. Zbl 0776.40001, MR 1181163, 10.1090/S0002-9939-1993-1181163-6
Reference: [7] Fridy, J. A., Khan, M. K.: Tauberian theorems via statistical convergence.J. Math. Anal. Appl. 228 (1998), 73-95. Zbl 0919.40006, MR 1659877, 10.1006/jmaa.1998.6118
Reference: [8] Fridy, J. A., Orhan, C.: Statistical limit superior and limit inferior.Proc. Am. Math. Soc. 125 (1997), 3625-3631. Zbl 0883.40003, MR 1416085, 10.1090/S0002-9939-97-04000-8
Reference: [9] Gadjiev, A. D., Orhan, C.: Some approximation theorems via statistical convergence.Rocky Mt. J. Math. 32 (2002), 129-138. Zbl 1039.41018, MR 1911352, 10.1216/rmjm/1030539612
Reference: [10] Katětov, M.: Products of filters.Commentat. Math. Univ. Carol. 9 (1968), 173-189. Zbl 0155.50301, MR 0250257
Reference: [11] Kolk, E.: The statistical convergence in Banach spaces.Tartu Ül. Toimetised 928 (1991), 41-52. MR 1150232
Reference: [12] Kostyrko, P., Macaj, M., Šalát, T., Strauch, O.: On statistical limit points.Proc. Am. Math. Soc. 129 (2001), 2647-2654. Zbl 0966.40001, MR 1838788, 10.1090/S0002-9939-00-05891-3
Reference: [13] Maddox, I. J.: Statistical convergence in a locally convex space.Math. Proc. Camb. Philos. Soc. 104 (1988), 141-145. Zbl 0674.40008, MR 0938459, 10.1017/S0305004100065312
Reference: [14] Martinez, V. G., Torrubia, G. S., Blanc, C. T.: A statistical convergence application for the Hopfield networks.Information Theory and Applications 15 (2008), 84-88.
Reference: [15] Miller, H. I.: A measure theoretical subsequence characterization of statistical convergence.Trans. Am. Math. Soc. 347 (1995), 1811-1819. Zbl 0830.40002, MR 1260176, 10.1090/S0002-9947-1995-1260176-6
Reference: [16] Pehlivan, S., Mamedov, M. A.: Statistical cluster points and turnpike.Optimization 48 (2000), 93-106. Zbl 0963.40002, MR 1772096, 10.1080/02331930008844495
Reference: [17] Penrose, M. D., Yukich, J. E.: Weak laws of large numbers in geometric probability.Ann. Appl. Probab. 13 (2003), 277-303. Zbl 1029.60008, MR 1952000, 10.1214/aoap/1042765669
Reference: [18] Rohatgi, V. K.: An Introduction to Probability Theory and Mathematical Statistics.Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1976). Zbl 0354.62001, MR 0407916
Reference: [19] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139-150. MR 0587239
Reference: [20] Savaş, E.: On statistically convergent sequences of fuzzy numbers.Inf. Sci. 137 (2001), 277-282. Zbl 0991.40001, MR 1857091, 10.1016/S0020-0255(01)00110-4
Reference: [21] Schoenberg, I. J.: The integrability of certain functions and related summability methods.Am. Math. Mon. 66 (1959), 361-375. Zbl 0089.04002, MR 0104946, 10.2307/2308747
Reference: [22] Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique.Colloq. Math. 2 (1951), 73-74.
Reference: [23] Zygmund, A.: Trigonometric Series.Cambridge University Press (1979).
.

Files

Files Size Format View
AplMat_58-2013-4_4.pdf 275.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo