Previous |  Up |  Next

Article

Title: Eigenvalue relationships between Laplacians of constant mean curvature hypersurfaces in $\mathbb{S}^{n+1}$ (English)
Author: Ma, Bingqing
Author: Huang, Guangyue
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 1
Year: 2013
Pages: 31-38
Summary lang: English
.
Category: math
.
Summary: For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian. (English)
Keyword: hypersurface with constant mean curvature
Keyword: the stability operator
Keyword: Hodge Laplacian
Keyword: rough Laplacian
MSC: 58J50
idZBL: Zbl 06202723
idMR: MR3067120
.
Date available: 2013-07-18T15:25:33Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143347
.
Reference: [1] Alencar, H., Carmo, M. do, Colares, A. G.: Stable hypersurfaces with constant scalar curvature.Math. Z., 213, 1993, 117-131, Zbl 0792.53057, MR 1217674, 10.1007/BF03025712
Reference: [2] Barbosa, J. L., Carmo, M. do, Eschenburg, M.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds.Math. Z., 197, 1988, 123-138, MR 0917854, 10.1007/BF01161634
Reference: [3] Cao, L., Li, H.: $r$-Minimal submanifolds in space forms..Ann. Global Anal. Geom., 32, 2007, 311-341, Zbl 1168.53029, MR 2346221, 10.1007/s10455-007-9064-x
Reference: [4] Cheng, Q.-M.: First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature.Proc. Amer. Math. Soc., 136, 2008, 3309-3318, MR 2407097, 10.1090/S0002-9939-08-09304-0
Reference: [5] Chern, S. S.: Minimal Submanifolds in a Riemannian Manifold (mimeographed).1968, University of Kansas, Lawrence, MR 0248648
Reference: [6] Soufi, A. El, Ilias, S.: Second eigenvalue of Schrödinger operators, mean curvature.Commun. Math. Phys., 208, 2000, 761-770, MR 1736334, 10.1007/s002200050009
Reference: [7] Li, H.: Hypersurfaces with constant scalar curvature in space forms.Math. Ann., 305, 1996, 665-672, Zbl 0864.53040, MR 1399710, 10.1007/BF01444243
Reference: [8] Li, H., Wang, X.: Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature.Proc. Amer. Math. Soc., 140, 2012, 291-307, Zbl 1252.53071, MR 2833541, 10.1090/S0002-9939-2011-10892-X
Reference: [9] Savo, A.: Index bounds for minimal hypersurfaces of the sphere.Indiana Univ. Math. J., 59, 2010, 823-837, Zbl 1209.53052, MR 2779062, 10.1512/iumj.2010.59.4013
Reference: [10] Simons, J.: Minimal varieties in Riemannian manifolds.Ann. of Math., 88, 2, 1968, 62-105, Zbl 0181.49702, MR 0233295, 10.2307/1970556
Reference: [11] Wu, C.: New characterization of the Clifford tori, the Veronese surface.Arch. Math. (Basel), 61, 1993, 277-284, MR 1231163, 10.1007/BF01198725
.

Files

Files Size Format View
ActaOstrav_21-2013-1_3.pdf 380.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo