Title:
|
Optimally approximating exponential families (English) |
Author:
|
Rauh, Johannes |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
49 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
199-215 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This article studies exponential families $\mathcal{E}$ on finite sets such that the information divergence $D(P\|\mathcal{E})$ of an arbitrary probability distribution from $\mathcal{E}$ is bounded by some constant $D>0$. A particular class of low-dimensional exponential families that have low values of $D$ can be obtained from partitions of the state space. The main results concern optimality properties of these partition exponential families. The case where $D=\log(2)$ is studied in detail. This case is special, because if $D<\log(2)$, then $\mathcal{E}$ contains all probability measures with full support. (English) |
Keyword:
|
exponential family |
Keyword:
|
information divergence |
MSC:
|
62B10 |
MSC:
|
94A15 |
MSC:
|
94A17 |
idZBL:
|
Zbl 06176033 |
idMR:
|
MR3085392 |
. |
Date available:
|
2013-07-22T08:42:51Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143362 |
. |
Reference:
|
[1] Ay, N.: An information-geometric approach to a theory of pragmatic structuring..Ann. Probab. 30 (2002), 416-436. Zbl 1010.62007, MR 1894113, 10.1214/aop/1020107773 |
Reference:
|
[2] Ay, N.: Locality of global stochastic interaction in directed acyclic networks..Neural Computat. 14 (2002), 2959-2980. Zbl 1079.68582, 10.1162/089976602760805368 |
Reference:
|
[3] Brown, L.: Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory..Institute of Mathematical Statistics, Hayworth 1986. Zbl 0685.62002, MR 0882001 |
Reference:
|
[4] Cover, T., Thomas, J.: Elements of Information Theory. First edition..Wiley, 1991. MR 1122806 |
Reference:
|
[5] Csiszár, I., Shields, P.: Information Theory and Statistics: A Tutorial. First edition..Foundations and Trends in Communications and Information Theory. Now Publishers, 2004. |
Reference:
|
[6] Csiszár, I., Matúš, F.: Generalized maximum likelihood extimates for exponential families..Probab. Theory Rel. Fields 141 (2008), 213-246. MR 2372970, 10.1007/s00440-007-0084-z |
Reference:
|
[7] Pietra, S. Della, Pietra, V. Della, Lafferty, J.: Inducing features of random fields..IEEE Trans. Pattern Analysis and Machine Intelligence 19 (1997), 380-393. 10.1109/34.588021 |
Reference:
|
[8] Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics..In: Oberwolfach Seminars 39, Birkhäuser, Basel 2009. Zbl 1166.13001, MR 2723140 |
Reference:
|
[9] Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models..Ann. Statist. 34 (2006), 5, 1463-1492. Zbl 1104.60007, MR 2278364, 10.1214/009053606000000263 |
Reference:
|
[10] Jaynes, E. T.: Information theory and statistical mechanics..Phys. Rev. 106 (1957), 4, 620-630. Zbl 0084.43701, MR 0087305, 10.1103/PhysRev.106.620 |
Reference:
|
[11] Juríček, J.: Maximization of information divergence from multinomial distributions..Acta Univ. Carolin. 52 (2011), 1, 27-35. MR 2808291 |
Reference:
|
[12] Lauritzen, S. L.: Graphical Models. First edition..Oxford Statistical Science Series, Oxford University Press, 1996. MR 1419991 |
Reference:
|
[13] Linsker, R.: Self-organization in a perceptual network..IEEE Computer 21 (1988), 105-117. 10.1109/2.36 |
Reference:
|
[14] Matúš, F., Ay, N.: On maximization of the information divergence from an exponential family..In: Proc. WUPES'03, University of Economics, Prague 2003, pp. 199-204. |
Reference:
|
[15] Matúš, F., Rauh, J.: Maximization of the information divergence from an exponential family and criticality..In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT2011), 2011. |
Reference:
|
[16] Montúfar, G., Rauh, J., Ay, N.: Expressive power and approximation errors of Restricted Boltzmann Machines..In: NIPS, 2011. |
Reference:
|
[17] Oxley, J.: Matroid Theory. First edition..Oxford University Press, New York 1992. MR 1207587 |
Reference:
|
[18] Rauh, J.: Finding the Maximizers of the Information Divergence from an Exponential Family..Ph.D. Dissertation, Universität Leipzig, 2011. MR 2817016 |
Reference:
|
[19] Rauh, J.: Finding the maximizers of the information divergence from an exponential family..IEEE Trans. Inform. Theory 57 (2011), 6, 3236-3247. MR 2817016, 10.1109/TIT.2011.2136230 |
Reference:
|
[20] Rauh, J., Kahle, T., Ay, N.: Support sets of exponential families and oriented matroids..Internat. J. Approx. Reasoning 52 (2011), 5, 613-626. MR 2787021, 10.1016/j.ijar.2011.01.013 |
Reference:
|
[21] Zhu, S. C., Wu, Y. N., Mumford, D.: Minimax entropy principle and its application to texture modeling..Neural Computation 9 (1997), 1627-1660. 10.1162/neco.1997.9.8.1627 |
. |