Previous |  Up |  Next


numeration systems; lazy representation; greedy representation; negative base; unique representation
We consider positional numeration systems with negative real base $-\beta$, where $\beta>1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained as representations in the positive base $\beta^2$ with a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In the case that $\beta$ is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings.
[1] Dajani, K., Kalle, Ch.: Transformations generating negative $\beta$-expansions. Integers 11B (2011), A5, 1-18. MR 3054424
[2] Dajani, K., Kraaikamp, C.: From greedy to lazy expansions and their driving dynamics. Exposition. Math. 20 (2002), 4, 315-327. DOI 10.1016/S0723-0869(02)80010-X | MR 1940010 | Zbl 1030.11035
[3] Vries, M. de, Komornik, V.: Unique expansions of real numbers. Adv. Math. 221 (2009), 2, 390-427. DOI 10.1016/j.aim.2008.12.008 | MR 2508926 | Zbl 1166.11007
[4] Erdös, P., Joó, I., Komornik, V.: Characterization of the unique expansions $1=\sum^\infty_{i=1}q^{-n_i}$ and related problems. Bull. Soc. Math. France 118 (1990), 3, 377-390. MR 1078082
[5] Ito, S., Sadahiro, T.: Beta-expansions with negative bases. Integers 9 (2009), A22, 239-259. MR 2534912 | Zbl 1191.11005
[6] Kalle, Ch., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Amer. Math. Soc. 364 (2012), 2281-2318. DOI 10.1090/S0002-9947-2012-05362-1 | MR 2888207
[7] Parry, W.: On the $\beta $-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. DOI 10.1007/BF02020954 | MR 0142719 | Zbl 0099.28103
[8] Pedicini, M.: Greedy expansions and sets with deleted digits. Theoret. Comput. Sci. 332 (2005), 1-3, 313-336. DOI 10.1016/j.tcs.2004.11.002 | MR 2122508 | Zbl 1080.11009
[9] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. DOI 10.1007/BF02020331 | MR 0097374 | Zbl 0079.08901
[10] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 4, 269-278. DOI 10.1112/blms/12.4.269 | MR 0576976 | Zbl 0494.10040
[11] Thurston, W.: Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.
Partner of
EuDML logo