Previous |  Up |  Next


observer design; stability; time-delay; differential mean value theory; Lyapunov–Krasovskii functional
The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically to zero. Furthermore, the problem of observer design with affine gain is investigated. The computing method for observer gain matrix is given and it is also demonstrated that the observer error converges asymptotically to zero. Finally, an illustrative example is given to validate the effectiveness of the proposed method.
[1] Abbaszadeh, M., Marquez, H. J.: Dynamical robust $H_\infty$ filtering for nonlinear uncertain systems: An LMI approach. J. Franklin Inst. 347 (2010) , 1227-1241. DOI 10.1016/j.jfranklin.2010.05.016 | MR 2669300 | Zbl 1202.93157
[2] Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Systems Control Lett. 59 (2010), 305-312. DOI 10.1016/j.sysconle.2010.03.005 | MR 2668922 | Zbl 1191.93016
[3] Dong, Y., Mei, S.: State observers for a class of multi-output nonlinear dynamic systems. Nonlinear Anal.: Theory, Methods and Appl. 74 (2011), 14, 4738-4745. DOI 10.1016/ | MR 2810713 | Zbl 1221.93035
[4] Dong, Y., Yang, Y.: Observer design for a class of multi-input multi-output nonlinear systems. Internat. J. Systems Sci. 42 (2011), 4, 695-703. DOI 10.1080/00207720903260143 | MR 2770752 | Zbl 1233.93014
[5] Germani, A., Manes, C., Pepe, P.: A new approach to state observation of nonlinear systems with delayed output. IEEE Trans. Automat. Control 47 (2002),1, 96-101. DOI 10.1109/9.981726 | MR 1879694
[6] Ibrir, S.: Observer-based control of a class of time-delay nonlinear systems having triangular structure. Automatica 47 (2011), 388-394. DOI 10.1016/j.automatica.2010.10.052 | MR 2878289 | Zbl 1207.93015
[7] Ibrir, S., Xie, W. F., Su, C. Y.: Observer design for discrete-time systems subject to time-delay nonlinearities. Internat. J. Systems Sci. 37 (2006), 9, 629-641. DOI 10.1080/00207720600774289 | MR 2242898 | Zbl 1101.93019
[8] Kwon, O. M., Park, J. H.: Exponential stability of uncertain dynamic systems including state delay. Appl. Math. Lett. 19 (2006), 901-907. DOI 10.1016/j.aml.2005.10.017 | MR 2240481 | Zbl 1220.34095
[9] Laila, D. S., Lovera, M., Astolfi, A.: A discrete-time observer design for spacecraft attitude determination using anorthogonality-preserving algorithm. Automatica 47 (2011), 5, 975-980. DOI 10.1016/j.automatica.2011.01.049 | MR 2878365
[10] Lu, G.: Robust observer design for Lipschitz nonlinear discrete-time systems with time-delay. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision, Grand Hyatt Singapore 2006, pp. 1-5.
[11] Lu, G., Ho, D. W. C.: Robust $H_\infty$ observer for a class of nonlinear discrete systems with time delay and parameter uncertainties. IEE Proc. Control Theory Appl. 151 (2004), 4, 439-444.
[12] Zemouche, A., Boutayeb, M., Bara, G. I.: Observers for a class of Lipschitz systems with extension to $H_\infty$ performance analysis. Systems Control Lett. 57 (2008), 18-27. DOI 10.1016/j.sysconle.2007.06.012 | MR 2365299 | Zbl 1129.93006
[13] Wang, Y., Lynch, A. F.: Observer design using a generalized time-scaled block triangular observer form. Systems Control Lett. 58 (2009), 346-352. DOI 10.1016/j.sysconle.2008.12.005 | MR 2512489 | Zbl 1159.93327
[14] Xu, S., Lu, J., Zhou, S., Yang, C.: Design of observers for a class of discrete-time uncertain nonlinear systems with time delay. J. Franklin Inst. 341 (2004), 295-308. DOI 10.1016/j.jfranklin.2003.12.012 | MR 2054478 | Zbl 1073.93007
[15] Zemouche, A., Boutayeb, M.: Observer design for Lipschitz nonlinear systems: The discrete-time case. IEEE Trans. Circuits and Systems - II: Express Briefs 53 (2006), 8, 777-781.
[16] Zemouche, A., Boutayeb, M.: A new observer design method for a class of Lipschitz nonlinear discrete-time systems with time-delay extension to $H_\infty$ performance analysis. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 414-419.
[17] Zemouche, A., Boutayeb, M., Bara, G. I.: On observers design for nonlinear time-delay systems. In: Proc. American Control Conference, Minneapolis 2006, pp. 4025-4030.
[18] Zemouche, A., Boutayeb, M., Bara, G. I.: Observer design for a class of nonlinear time-delay systems. In: Proc. 2007 American Control Conference Marriott Marquis Hotel at Times Square, New York City 2007, pp. 1676-1681.
Partner of
EuDML logo