Previous |  Up |  Next


consensus; multi-agent systems; tracking; switching systems
The simultaneous problem of consensus and trajectory tracking of linear multi-agent systems is considered in this paper, where the dynamics of each agent is represented by a single-input single-output linear system. In order to solve this problem, a distributed control strategy is proposed in this work, where the trajectory and the formation of the agents are achieved asymptotically even in the presence of switching communication topologies and smooth formation changes, and ensuring the closed-loop stability of the multi-agent system. Moreover, the structure and dimension of the representation of the agent dynamics are not restricted to be the same, as usually assumed in the literature. A simulation example is provided in order to illustrate the main results.
[1] Back, J., Kim, H., Shim, H.: Output feedback consensus for high-order linear systems having uniform ranks under switching topology. Control & Theory Applications, IET 6 (2012), 1118-1124. DOI 10.1049/iet-cta.2011.0197 | MR 2985189
[2] Cao, Y., Ren, W.: Optimal linear-consensus algorithms: An LQR perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40 (2010), 819-830. DOI 10.1109/TSMCB.2009.2030495
[3] Fax, J. A., Murray, R. M.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49 (2004), 1465-1476. DOI 10.1109/TAC.2004.834433 | MR 2086912
[4] Gao, L., Tang, Y., Chen, W., Zhang, H.: Consensus seeking in multi-agent systems with an active leader and communication delays. Kybernetika 47 (2011), 773-789. MR 2850463 | Zbl 1236.93006
[5] Gomez-Gutierrez, D., Ramírez-Prado, G., Ramirez-Treviño, A., Ruiz-León, J.: Observability of switched linear systems. IEEE Transactions on Industrial Informatics 6 (2010), 127-135. DOI 10.1109/TII.2009.2034737
[6] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643. MR 2884865 | Zbl 1227.93008
[7] Isidori, A.: Non linear control systems. Springer-Verlag, London 1995.
[8] Kailath, T.: Linear systems. Prentice-Hall, 1980. MR 0569473 | Zbl 0870.93013
[9] Khalil, H. K.: Nonlinear systems. Third Edition. Prentice Hall, New Jersey 2002. Zbl 1194.93083
[10] Lafferriere, G., Williams, A., Caughman, J., Veerman, J.J.P.: Decentralized control of vehicle formations. Systems and Control Letters 54 (2005), 899-910. DOI 10.1016/j.sysconle.2005.02.004 | MR 2152868 | Zbl 1129.93303
[11] Li, Z., Duan, Z., Huang, L.: Leader-follower consensus of multi-agent systems. American Control Conference (2009), 3256-3261.
[12] Liberzon, D.: Switching in systems and control. Birkhäuser, Boston 2003. MR 1987806 | Zbl 1036.93001
[13] Ma, C.Q., Zhang, J.F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Transactions on Automatic Control 55 (2010), 1263-1268. DOI 10.1109/TAC.2010.2042764 | MR 2642097
[14] Meng, Z., Ren, W., Cao, Y., You, Z.: Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41 (2011), 75-87. DOI 10.1109/TSMCB.2010.2045891
[15] Min, H., Sun, F., Wang, S., Li, H.: Distributed adaptive consensus algorithm for networked Euler-Lagrange systems. Control Theory Appl., IET 5 (2011), 145-154. DOI 10.1049/iet-cta.2009.0607 | MR 2807953
[16] Olfati-Saber, R., Fax, J. A., Murray, R. M.: Consensus and cooperation in networked multi-agent systems. IEEE Transactions on Automatic Control 95 (2007), 215-233.
[17] Olfati-Saber, R., Murray, R. M.: Consensus protocols for networks of dynamic agents. In: Proc. American Control Conference 2003, pp. 951-956.
[18] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control 49 (2004), 1520-1533. DOI 10.1109/TAC.2004.834113 | MR 2086916
[19] Ren, W., Beard, R. W.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer-Verlag, London 2008. Zbl 1144.93002
[20] Semsar-Kazerooni, E., Khorasani, K.: Optimal consensus seeking in a network of multiagent systems: An LMI approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40 (2010), 540-547. DOI 10.1109/TSMCB.2009.2026730
[21] Su, Y., Huang, J.: Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42 (2012), 864-875. DOI 10.1109/TSMCB.2011.2179981
[22] Wang, X., Hong, Y.: Parametrization and geometric analysis of coordination controllers for multi-agent systems. Kybernetika 45 (2009), 785-800. MR 2599112 | Zbl 1209.93012
[23] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772. MR 2850462 | Zbl 1236.93010
[24] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to robust output regulation of networked linear systems. In: Proc. 8th IEEE International Conference on Control and Automation 2010, pp. 1853-1857.
[25] Wu, Z., Guan, Z., Wu, X., Li, T.: Consensus based formation control and trajectory tracking of multi-agent robot systems. J. Intelligent and Robotic Systems 48 (2007), 397-410. DOI 10.1007/s10846-006-9108-7
[26] Xi, X., Abed, E. H.: Formation control with virtual leaders and reduced communications. In: IEEE Conference on Decision and Control 2005, pp. 1854-1860.
Partner of
EuDML logo