Previous |  Up |  Next

Article

Title: On the approximate solution of integro-differential equations arising in oscillating magnetic fields (English)
Author: Maleknejad, K.
Author: Hadizadeh, M.
Author: Attary, M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 5
Year: 2013
Pages: 595-607
Summary lang: English
.
Category: math
.
Summary: In this work, we propose the Shannon wavelets approximation for the numerical solution of a class of integro-differential equations which describe the charged particle motion for certain configurations of oscillating magnetic fields. We show that using the Galerkin method and the connection coefficients of the Shannon wavelets, the problem is transformed to an infinite algebraic system, which can be solved by fixing a finite scale of approximation. The error analysis of the method is also investigated. Finally, some numerical experiments are reported to illustrate the accuracy and applicability of the method. (English)
Keyword: charged particle motion
Keyword: oscillating magnetic field
Keyword: integro-differential equation
Keyword: Shannon wavelet
Keyword: numerical treatment
MSC: 34B05
MSC: 34K28
MSC: 78A35
idZBL: Zbl 06282097
idMR: MR3104619
DOI: 10.1007/s10492-013-0029-z
.
Date available: 2013-09-14T11:44:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143433
.
Reference: [1] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations.World Scientific Singapore (1986). Zbl 0619.34019, MR 1021979
Reference: [2] Akyüz-Daşcioğlu, A.: Chebyshev polynomial solutions of systems of linear integral equations.Appl. Math. Comput. 151 (2004), 221-232. Zbl 1049.65149, MR 2037962, 10.1016/S0096-3003(03)00334-5
Reference: [3] Akyüz-Daşcioğlu, A., Sezer, M.: Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations.J. Franklin Inst. 342 (2005), 688-701. Zbl 1086.65121, MR 2166749, 10.1016/j.jfranklin.2005.04.001
Reference: [4] Bojeldain, A. A.: On the numerical solving of nonlinear Volterra integro-differential equations.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 11 (1991), 105-125. Zbl 0755.45011, MR 1158315
Reference: [5] Brunner, H., Makroglou, A., Miller, R. K.: Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution.Appl. Numer. Math. 23 (1997), 381-402. Zbl 0876.65090, MR 1453423, 10.1016/S0168-9274(96)00075-X
Reference: [6] Cattani, C.: Connection coefficients of Shannon wavelets.Math. Model. Anal. 11 (2006), 117-132. Zbl 1117.65179, MR 2231204, 10.3846/13926292.2006.9637307
Reference: [7] Cattani, C.: Shannon wavelets for the solution of integrodifferential equations.Math. Probl. Eng. (2010), Article ID 408418. Zbl 1191.65174, MR 2610514
Reference: [8] Dehghan, M., Shakeri, F.: Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method.Progress In Electromagnetics Research 78 (2008), 361-376. 10.2528/PIER07090403
Reference: [9] Domke, K., Hacia, L.: Integral equations in some thermal problems.Int. J. Math. Comput. Simulation 2 (2007), 184-189.
Reference: [10] Machado, J. M., Tsuchida, M.: Solutions for a class of integro-differential equations with time periodic coefficients.Appl. Math. E-Notes 2 (2002), 66-71. Zbl 0999.45003, MR 1979412
Reference: [11] Maleknejad, K., Attary, M.: An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattani's method.Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2672-2679. Zbl 1221.65332, MR 2772283, 10.1016/j.cnsns.2010.09.037
Reference: [12] Mureşan, V.: Existence, uniqueness and data dependence for the solutions of some integro-differential equations of mixed type in Banach space.Z. Anal. Anwend. 23 (2004), 205-216. Zbl 1062.45006, MR 2066102, 10.4171/ZAA/1194
Reference: [13] Wu, G.-C., Lee, E. W. M.: Fractional variational iteration method and its application.Phys. Lett., A 374 (2010), 2506-2509. Zbl 1237.34007, MR 2640023, 10.1016/j.physleta.2010.04.034
Reference: [14] Yildirim, A.: Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method.Comput. Math. Appl. 56 (2008), 3175-3180. Zbl 1165.65377, MR 2474572, 10.1016/j.camwa.2008.07.020
.

Files

Files Size Format View
AplMat_58-2013-5_6.pdf 298.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo