Previous |  Up |  Next

Article

Title: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch (English)
Author: Ma, Mihua
Author: Zhang, Hua
Author: Cai, Jianping
Author: Zhou, Jin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 4
Year: 2013
Pages: 539-553
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique. (English)
Keyword: practical synchronization
Keyword: impulsive control
Keyword: $n$-dimensional nonautonomous systems
Keyword: parameter mismatch
Keyword: gyrostat system
MSC: 70K40
MSC: 74H65
.
Date available: 2013-09-17T16:24:24Z
Last updated: 2013-09-17
Stable URL: http://hdl.handle.net/10338.dmlcz/143444
.
Reference: [1] V. Astakhov, V.: Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems..Phys. Rev. E 58 (1998), 5620-5628. 10.1103/PhysRevE.58.5620
Reference: [2] Cai, J. P., Ma, M. H., Wu, X. F.: Synchronization of a class of master-slave non-autonomous chaotic systems with parameter mismatch via sinusoidal feedback control..Internat. J. Mod. Phys. B 25 (2011), 2195-2215. 10.1142/S0217979211100254
Reference: [3] Cai, S. M., Hao, J. J., Liu, Z. G.: Chaos quasi-synchronization induced by impulses with parameter mismatches..Chaos 21 (2011), 023112. MR 2849960
Reference: [4] Chen, G., Zhou, J., Čelikovský, C.: On LaSalle's invariance principle and its application to robust synchronization of vector Lienard equations..IEEE Trans. Automat. Control 50 (2005), 869-874. MR 2142006, 10.1109/TAC.2005.849250
Reference: [5] Chen, Y., Wu, X. F., Gui, Z. F.: Global robust synchronization of a class of nonautonomous chaotic systems with parameter mismatch via variable substitution control..Internat. J. Bifur. Chaos 21 (2011), 1369-1382. Zbl 1248.34077, MR 2819827, 10.1142/S0218127411029239
Reference: [6] Ge, Z. M., Leu, W. Y.: Anti-control of chaos of two-degrees-of-freedom loudspeaker system and chaos synchronization of different order systems..Chaos, Solitons and Fractals 20 (2004), 503-521. Zbl 1048.37077, 10.1016/j.chaos.2003.07.001
Reference: [7] Ge, Z. M., Lin, T. N.: Chaos, chaos control and synchronization of a gyrostat system..J. Sound Vibration 251 (2002), 519-542. Zbl 1237.70019, MR 1897547, 10.1006/jsvi.2001.3995
Reference: [8] Ge, Z. M., Yu, T. C., Chen, Y. S.: Chaos synchronization of a horizontal platform system..J. Sound Vibration 268 (2003), 731-749. 10.1016/S0022-460X(02)01607-3
Reference: [9] Horn, R. A., Johnson, C. R.: Matrix Analysis..Cambridge University, Cambridge 1985. Zbl 0801.15001, MR 0832183
Reference: [10] Huang, T. W., Li, C. D., Liao, X. F.: Synchronization of a class of coupled chaotic delayed systems with parameter mismatch..Chaos 17 (2007), 033121. Zbl 1163.37335, MR 2356975, 10.1063/1.2776668
Reference: [11] Jalnine, A., Kim, S. Y.: Characterization of the parameter-mismatching effect on the loss of chaos synchronization..Phys. Rev. E 65 (2002), 026210-026216. 10.1103/PhysRevE.65.026210
Reference: [12] Koofigar, H. R., Sheikholeslam, F., Hosseinnia, S.: Robust adaptive synchronization for a general class of uncertain chaotic systems with application to Chua's circuit..Chaos 21 (2011), 043134. 10.1063/1.3671969
Reference: [13] Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H.: Generallized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication..Kybernetika 48 (2012), 190-205. MR 2954320
Reference: [14] Lu, S. J., Chen, L.: A general synchronization method of chaotic communication system via kalman filtering..Kybernetika 44 (2008), 43-52. MR 2405054
Reference: [15] Ma, M. H., Cai, J. P.: Synchronization criteria for coupled chaotic systems with parameter mismatches..Internat. J. Mod. Phys. B 25 (2011), 2493-2506. MR 2822998, 10.1142/S0217979211100916
Reference: [16] Ma, M. H., Zhou, J., Cai, J. P.: Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications..Nonlinear Dyn. 69 (2012), 3, 1285-1292. Zbl 1258.34126, MR 2943385
Reference: [17] Pecora, L. M., Carroll, T. L.: Synchronizationin chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. MR 1038263, 10.1103/PhysRevLett.64.821
Reference: [18] Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C.: Synchronization with error bound of non-identical forced oscillators..Kybernetika 44 (2008), 534-545. Zbl 1173.70009, MR 2459071
Reference: [19] Wang, L. P., Yuan, Z. T., Chen, X. H., Zhou, Z. F.: Lag synchronization of chaotic systems with parameter mismatches..Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 987-992. Zbl 1221.37226, MR 2725820, 10.1016/j.cnsns.2010.04.029
Reference: [20] Wu, X. F., Cai, J. P., Wang, M. H.: Robust synchronization of chaotic horizontal platform systems with phase difference..J. Sound Vibration 305 (2007), 481-491. Zbl 1242.93123, MR 2324743, 10.1016/j.jsv.2007.04.034
Reference: [21] Yang, T.: Impulsive Control Theory..Springer, Berlin 2001. Zbl 0996.93003, MR 1850661
Reference: [22] Zhang, W., Huang, J. J., Wei, P. C.: Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control..Appl. Math. Model. 35 (2011), 612-620. Zbl 1205.93125, MR 2718458, 10.1016/j.apm.2010.07.009
Reference: [23] Zhou, J., Xiang, L., Liu, Z. R.: Global synchronization in general complex delayed dynamical networks and its applications..Phys. A 385 (2007), 729-742. MR 2584888, 10.1016/j.physa.2007.07.006
Reference: [24] Zhu, Z. L., Li, S. P., Yu, H.: A new approach to generallized chaos synchronization based on the stability of the error system..Kybernetika 44 (2008), 492-500. MR 2459067
.

Files

Files Size Format View
Kybernetika_49-2013-4_3.pdf 415.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo