Previous |  Up |  Next

Article

Title: Memoryless solution to the optimal control problem for linear systems with delayed input (English)
Author: Carravetta, Francesco
Author: Palumbo, Pasquale
Author: Pepe, Pierdomenico
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 4
Year: 2013
Pages: 568-589
Summary lang: English
.
Category: math
.
Summary: This note investigates the optimal control problem for a time-invariant linear systems with an arbitrary constant time-delay in in the input channel. A state feedback is provided for the infinite horizon case with a quadratic cost function. The solution is memoryless, except at an initial time interval of measure equal to the time-delay. If the initial input is set equal to zero, then the optimal feedback control law is memoryless from the beginning. Stability results are established for the closed loop system, in the scalar case. (English)
Keyword: time-delay systems
Keyword: optimal control
Keyword: stability
MSC: 62A10
MSC: 93E12
.
Date available: 2013-09-17T16:28:32Z
Last updated: 2013-09-17
Stable URL: http://hdl.handle.net/10338.dmlcz/143446
.
Reference: [1] Basin, M.: New Trends in optimal Filtering and Control for Polynomial and Time-Delay Systems..Lecture Notes in Control and Inform. Sci. 380, Springer-Verlag, Berlin - Heidelberg 2008. Zbl 1160.93001, MR 2462136
Reference: [2] Basin, M., Martanez-Zniga, R.: Optimal linear filtering over observations with multiple delays..Internat. J. Robust Nonlinear Control 14 (2004), 8, 685-696. MR 2058560, 10.1002/rnc.917
Reference: [3] Basin, M., Rodriguez-Gonzalez, J., Fridman, L., Acosta, P.: Integral sliding mode design for robust filtering and control of linear stochastic time-delay systems..Internat. J. Robust Nonlinear Control 15 (2005), 9, 407-421. Zbl 1100.93012, MR 2139465, 10.1002/rnc.995
Reference: [4] Basin, M., Rodriguez-Gonzalez, J., Martinez-Zuniga, R.: Optimal control for linear systems with time-delay in control input..J. Franklin Inst. - Engrg. and Appl. Math. 341 (2004), 3, 267-278. Zbl 1073.93055, MR 2054476, 10.1016/j.jfranklin.2003.12.004
Reference: [5] Boukas, E.-K., Liu, Z.-K.: Deterministic and Stochastic Time Delay Systems..Birkhauser, Boston 2002. Zbl 1056.93001
Reference: [6] Carravetta, F., Palumbo, P., Pepe, P.: Quadratic optimal control of linear systems with time-varying input delay..In: Proc. 49th IEEE Conf. on Dec. and Control (CDC), Atlanta 2010, pp. 4996-5000.
Reference: [7] Carravetta, F., Palumbo, P., Pepe, P.: Memoryless solution to the infinite horizon optimal control of LTI systems with delayed input.In: Proc. IASTED Asian Conference on Modelling, Identification and Control (AsiaMIC), Phuket 2012.
Reference: [8] Chang, Y. P., Tsai, J. S. H., Shieh, L. S.: Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints..IEEE Trans. Circuits and Systems I - Fundamental Theory and Applications 49 (2002), 9, 1382-1392.
Reference: [9] Chopra, N., Berestesky, P., Spong, M. W.: Bilateral teleoperation over unreliable communication networks..IEEE Trans. Control Systems Technol. 16 (2008), 304-313. 10.1109/TCST.2007.903397
Reference: [10] Chyung, D. H.: Discrete systems with delays in control..IEEE Trans. Automat. Control 14 (1969), 196-197. MR 0243873, 10.1109/TAC.1969.1099152
Reference: [11] Delfour, M. C.: The linear quadratic optimal control problem with delays in state and control variables: A state space approach..SIAM J. Control Optim. 24 (1986), 835-883. Zbl 0606.93037, MR 0854061, 10.1137/0324053
Reference: [12] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems..Systems Control Lett. 43 (2001), 4, 309-319. Zbl 0974.93028, MR 2008812, 10.1016/S0167-6911(01)00114-1
Reference: [13] Fridman, E.: Stability of linear descriptor systems with delay: a Lyapunov-based approach..J. Math. Anal. Appl. 273 (2002), 24-44. Zbl 1032.34069, MR 1933013, 10.1016/S0022-247X(02)00202-0
Reference: [14] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time Delay Systems..Birkhauser, Boston 2003. Zbl 1039.34067
Reference: [15] Ichikawa, A.: Quadratic control of evolution equations with delays in control..SIAM J. Control Optim. 5 (1982), 645-668. Zbl 0495.49006, MR 0667646, 10.1137/0320048
Reference: [16] Germani, A., Manes, C., Pepe, P.: Implementation of an LQG control scheme for linear systems with delayed feedback action..In: Proc. 3rd European Control Conference (ECC), Vol. 4, Rome 1995, pp. 2886-2891.
Reference: [17] Germani, A., Manes, C., Pepe, P.: A twofold spline approximation for finite horizon LQG control of hereditary systems..SIAM J. Control Optim. 39 (2000), 4, 1233-1295. Zbl 1020.93030, MR 1814274, 10.1137/S0363012998337461
Reference: [18] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics..Series Math. Sci. Engrg. 191, Academic Press, Boston 1993. Zbl 0777.34002, MR 1218880
Reference: [19] Kojima, A., Ishijima, S.: Formulas on preview and delayed $H_\infty$ control..In: Proc. 42nd IEEE Conf. on Dec. and Control (CDC), Mauii 2003, pp. 6532-6538.
Reference: [20] Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems..Birkauser, Boston 2009. Zbl 1181.93003, MR 2553294
Reference: [21] Ma, Y. C., Huang, L. F., Zhang, Q. L.: Robust guaranteed cost $H\sb \infty$ control for an uncertain time-varying delay system..(Chinese) Acta Phys. Sinica 56 (2007), 7, 3744-3752. MR 2356808
Reference: [22] Milman, M. H.: Approximating the linear quadratic optimal control law for hereditary systems with delays in the control..SIAM J. Control Optim. 2 (1988), 291-320. Zbl 0651.93025, MR 0929803, 10.1137/0326017
Reference: [23] Moelja, A. A., Meinsma, G.: $H\sb 2$-optimal control of systems with multiple i/o delays: time domain approach..Automatica 41 (2005), 7, 1229-1238. MR 2160122, 10.1016/j.automatica.2005.01.016
Reference: [24] Mondié, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation..IEEE Trans. Automat. Control 48, 12, 2207-2212. MR 2027246, 10.1109/TAC.2003.820147
Reference: [25] Niculescu, S.-I.: Delay Effects on Stability, A Robust Control Approach..LNCIS 269, Springer-Verlag, London Limeted 2001. Zbl 0997.93001, MR 1880658
Reference: [26] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics..Math. Sci. Engrg. 191, Academic Press Inc., San Diego 1993. Zbl 0777.34002, MR 1218880
Reference: [27] Pandolfi, P.: The standard regulator problem for systems with input delays. An approach through singular control theory..Appl. Math. Optim. 31 (1995), 119-136. Zbl 0815.49006, MR 1309302, 10.1007/BF01182784
Reference: [28] Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems..Syst. Control Lett. 55 (2006), 1006-1014. Zbl 1120.93361, MR 2267393, 10.1016/j.sysconle.2006.06.013
Reference: [29] Pindyck, R. S.: The discrete-time tracking problem with a time delay in the control..IEEE Trans. Automat. Control 17 (1972), 397-398. MR 0439335, 10.1109/TAC.1972.1099975
Reference: [30] Polushin, I., Marquez, H. J., Tayebi, A., Liu, P. X.: A multichannel IOS small gain theorm for systems with multiple time-varying communication delays..IEEE Trans. Automat. Control 54 (2009), 404-409. MR 2491974, 10.1109/TAC.2008.2009582
Reference: [31] Tadmor, G.: The standard $H_{\infty}$ problem in systems with a single input delay..IEEE Trans. Automat. Control 45 (2000), 382-397. Zbl 0978.93026, MR 1762852, 10.1109/9.847719
Reference: [32] Wang, P. K. C.: Optimal control for discrete-time systems with time-lag controls..IEEE Trans. Automat. Control 19 (1975), 425-426. 10.1109/TAC.1975.1100968
Reference: [33] Zhang, H., Duan, G., Xie, L.: Linear quadratic regulation for linear time-varying systems with multiple input delays..Automatica 42 (2006), 9, 1465-1476. Zbl 1128.49304, MR 2246836, 10.1016/j.automatica.2006.04.007
Reference: [34] Zhou, B., Lin, Z., Duan, G.-R.: Truncated predictor feedback for linear systems with long time-varying input delays..Automatica 48 (2012), 10, 2387-2389. MR 2961137, 10.1016/j.automatica.2012.06.032
.

Files

Files Size Format View
Kybernetika_49-2013-4_5.pdf 565.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo