Previous |  Up |  Next

Article

Title: Weak solutions for elliptic systems with variable growth in Clifford analysis (English)
Author: Fu, Yongqiang
Author: Zhang, Binlin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 643-670
Summary lang: English
.
Category: math
.
Summary: In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=&B(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=&0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions. (English)
Keyword: elliptic system
Keyword: Clifford analysis
Keyword: variable exponent
Keyword: Dirichlet problem
MSC: 30G35
MSC: 35D30
MSC: 35J60
MSC: 46E35
idZBL: Zbl 06282103
idMR: MR3125647
DOI: 10.1007/s10587-013-0045-x
.
Date available: 2013-10-07T12:01:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143482
.
Reference: [1] Abłamowicz, R., Fauser, B., eds.: Clifford Algebras and Their Applications in Mathematical Physics.Proceedings of the 5th Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 1: Algebra and Physics. Progress in Physics 18 Birkhäuser, Boston (2000). MR 1783520
Reference: [2] Abreu-Blaya, R., Bory-Reyes, J., Delanghe, R., Sommen, F.: Duality for harmonic differential forms via Clifford analysis.Adv. Appl. Clifford Algebr. 17 (2007), 589-610. Zbl 1134.30336, MR 2356260, 10.1007/s00006-007-0034-y
Reference: [3] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations.Arch. Ration. Mech. Anal. 86 (1984), 125-135. Zbl 0565.49010, MR 0751305, 10.1007/BF00275731
Reference: [4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext Springer, New York (2011). Zbl 1220.46002, MR 2759829
Reference: [5] Dacorogna, B.: Weak Continuity and Weak Lower Semi-Continuity of Non-Linear Functionals.Lecture Notes in Mathematics 922 Springer, Berlin (1982). Zbl 0484.46041, MR 0658130, 10.1007/BFb0096144
Reference: [6] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator.Related REDUCE Software by F. Brackx and D. Constales. Mathematics and its Applications Kluwer Academic Publishers, Dordrecht (1992). Zbl 0747.53001, MR 1169463
Reference: [7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [8] Doran, C., Lasenby, A.: Geometric Algebra for Physicists.Cambridge University Press Cambridge (2003). Zbl 1078.53001, MR 1998960
Reference: [9] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems.Unabridged, corrected republication of the 1976 English original. Classics in Applied Mathematics 28 Society for Industrial and Applied Mathematics, Philadelphia (1999). Zbl 0939.49002, MR 1727362
Reference: [10] Eisen, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals.Manuscr. Math. 27 (1979), 73-79. Zbl 0404.28004, MR 0524978, 10.1007/BF01297738
Reference: [11] Fan, X., Zhao, D.: On the spaces $L^{p(x)}\{\Omega\}$ and $W^{m,p(x)}\{\Omega\}$.J. Math. Anal. Appl. 263 (2001), 424-446. Zbl 1028.46041, MR 1866056
Reference: [12] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$.J. Math. Anal. Appl. 262 (2001), 749-760. Zbl 0995.46023, MR 1859337, 10.1006/jmaa.2001.7618
Reference: [13] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem.Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. Zbl 1146.35353, MR 1954585, 10.1016/S0362-546X(02)00150-5
Reference: [14] Fu, Y.: Weak solution for obstacle problem with variable growth.Nonlinear Anal., Theory Methods Appl. 59 (2004), 371-383. Zbl 1064.46022, MR 2093096, 10.1016/j.na.2004.02.032
Reference: [15] Fu, Y., Dong, Z., Yan, Y.: On the existence of weak solutions for a class of elliptic partial differential systems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 48 (2002), 961-977. Zbl 1219.35088, MR 1880257, 10.1016/S0362-546X(00)00227-3
Reference: [16] Fu, Y., Zhang, B.: Clifford valued weighted variable exponent spaces with an application to obstacle problems.Advances in Applied Clifford Algebras 23 (2013), 363-376. MR 3068124, 10.1007/s00006-013-0383-7
Reference: [17] Gilbert, J. E., Murray, M. A. M.: Clifford Algebra and Dirac Operators in Harmonic Analysis.Paperback reprint of the hardback edition 1991. Cambridge Studies in Advanced Mathematics 26 Cambridge University Press, Cambridge (2008). MR 1130821
Reference: [18] Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers.Mathematical Methods in Practice Wiley, Chichester (1997). Zbl 0897.30023
Reference: [19] Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and $n$-dimensional Space.Transl. from the German Birkhäuser, Basel (2008). Zbl 1132.30001, MR 2369875
Reference: [20] Gürlebeck, K., Kähler, U., Ryan, J., Sprößig, W.: Clifford analysis over unbounded domains.Adv. Appl. Math. 19 (1997), 216-239. Zbl 0877.30026, MR 1459499, 10.1006/aama.1997.0541
Reference: [21] Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems.International Series of Numerical Mathematics 89 Birkhäuser, Basel (1990). Zbl 0850.35001, MR 1096955
Reference: [22] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [23] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Unabridged republication of the 1993 original Dover Publications, Mineola (2006). Zbl 1115.31001, MR 2305115
Reference: [24] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [25] Liu, F.: A Luzin type property of Sobolev functions.Indiana Univ. Math. J. 26 (1977), 645-651. Zbl 0368.46036, MR 0450488, 10.1512/iumj.1977.26.26051
Reference: [26] Morrey, C. B.: Multiple Integrals in the Calculus of Variations.Die Grundlehren der mathematischen Wissenschaften 130 Springer, Berlin (1966). Zbl 0142.38701, MR 2492985, 10.1007/978-3-540-69952-1
Reference: [27] Nolder, C. A.: $A$-harmonic equations and the Dirac operator.J. Inequal. Appl. (2010), Article ID 124018, 9 pages. Zbl 1207.35144, MR 2651833
Reference: [28] Nolder, C. A.: Nonlinear $A$-Dirac equations.Adv. Appl. Clifford Algebr. 21 (2011), 429-440. Zbl 1253.30073, MR 2793534, 10.1007/s00006-010-0253-5
Reference: [29] Nolder, C. A., Ryan, J.: $p$-Dirac operators.Adv. Appl. Clifford Algebr. 19 (2009), 391-402. Zbl 1170.53028, MR 2524677, 10.1007/s00006-009-0162-7
Reference: [30] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748 Springer, Berlin (2000). Zbl 0968.76531, MR 1810360, 10.1007/BFb0104030
Reference: [31] Ryan, J., Sprößig, W., eds.: Clifford Algebras and Their Applications in Mathematical Physics.Papers of the 5th International Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 2: Clifford Analysis. Progress in Physics 19 Birkhäuser, Boston (2000). MR 1771360
.

Files

Files Size Format View
CzechMathJ_63-2013-3_6.pdf 364.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo