Title:
|
Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra (English) |
Author:
|
Ammar, Faouzi |
Author:
|
Makhlouf, Abdenacer |
Author:
|
Saadaoui, Nejib |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
721-761 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted ${\rm osp}(1,2)$ superalgebra and $q$-deformed Witt superalgebra. (English) |
Keyword:
|
Hom-Lie superalgebra |
Keyword:
|
derivation |
Keyword:
|
cohomology |
Keyword:
|
$q$-deformed superalgebra |
MSC:
|
17A70 |
MSC:
|
17B56 |
MSC:
|
17B68 |
idZBL:
|
Zbl 06282107 |
idMR:
|
MR3125651 |
DOI:
|
10.1007/s10587-013-0049-6 |
. |
Date available:
|
2013-10-07T12:06:09Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143486 |
. |
Reference:
|
[1] Aizawa, N., Sato, H.: $q$-deformation of the Virasoro algebra with central extension.Phys. Lett. B 256 (1991), 185-190. MR 1099971, 10.1016/0370-2693(91)90671-C |
Reference:
|
[2] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras.J. Lie Theory 21 (2011), 813-836. Zbl 1237.17003, MR 2917693 |
Reference:
|
[3] Ammar, F., Makhlouf, A.: Hom-Lie superalgebras and Hom-Lie admissible superalgebras.J. Algebra 324 (2010), 1513-1528. Zbl 1258.17008, MR 2673748, 10.1016/j.jalgebra.2010.06.014 |
Reference:
|
[4] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys.. |
Reference:
|
[5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036 |
Reference:
|
[6] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations.Algebra Colloq. 6 (1999), 51-70. Zbl 0943.17007, MR 1680657 |
Reference:
|
[7] Larsson, D., Silvestrov, S. D.: Quasi-hom-Lie algebras, central extensions and $2$-cocyclelike identities.J. Algebra 288 (2005), 321-344. MR 2146132, 10.1016/j.jalgebra.2005.02.032 |
Reference:
|
[8] Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras.Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248. Zbl 1105.17005, MR 2184027 |
Reference:
|
[9] Larsson, D., Silvestrov, S. D.: Quasi-deformations of $sl_2(\mathbb{F})$ using twisted derivations.Commun. Algebra 35 (2007), 4303-4318. MR 2372334, 10.1080/00927870701545127 |
Reference:
|
[10] Larsson, D., Silvestrov, S. D.: Graded quasi-Lie algebras.Czechoslovak J. Phys. 55 (2005), 1473-1478. MR 2223838, 10.1007/s10582-006-0028-3 |
Reference:
|
[11] Liu, K.: Characterizations of quantum Witt algebra.Lett. Math. Phys. 24 (1992), 257-265. MR 1172453, 10.1007/BF00420485 |
Reference:
|
[12] Makhlouf, A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras.Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177. Zbl 1252.17001, MR 2648355 |
Reference:
|
[13] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206 |
Reference:
|
[14] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras.Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206. Zbl 1173.16019, MR 2509148 |
Reference:
|
[15] Makhlouf, A., Silvestrov, S. D.: Notes on $1$-parameter formal deformations of Hom-associative and Hom-Lie algebras.Forum Math. 22 (2010), 715-759. Zbl 1201.17012, MR 2661446, 10.1515/forum.2010.040 |
Reference:
|
[16] Scheunert, M.: Generalized Lie algebras.J. Math. Phys. 20 (1979), 712-720. Zbl 0423.17003, MR 0529734, 10.1063/1.524113 |
Reference:
|
[17] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716.Springer Berlin (1979). MR 0537441, 10.1007/BFb0070929 |
Reference:
|
[18] Scheunert, M., Zhang, R. B.: Cohomology of Lie superalgebras and their generalizations.J. Math. Phys. 39 (1998), 5024-5061. Zbl 0928.17023, MR 1643330, 10.1063/1.532508 |
Reference:
|
[19] Sheng, Y.: Representations of Hom-Lie algebras.Algebr. Represent. Theory 15 (2012), 1081-1098. MR 2994017, 10.1007/s10468-011-9280-8 |
Reference:
|
[20] Yau, D.: Enveloping algebras of Hom-Lie algebras.J. Gen. Lie Theory Appl. 2 (2008), 95-108. Zbl 1214.17001, MR 2399418, 10.4303/jglta/S070209 |
Reference:
|
[21] Yau, D.: Hom-algebras and homology.J. Lie Theory 19 (2009), 409-421. Zbl 1252.17002, MR 2572137 |
Reference:
|
[22] Yau, D.: Hom-bialgebras and comodule Hom-algebras.Int. Electron. J. Algebra 8 (2010), 45-64. Zbl 1253.16032, MR 2660540 |
Reference:
|
[23] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras.J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. Zbl 1179.17001, MR 2539278 |
. |