Previous |  Up |  Next

Article

Title: Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra (English)
Author: Ammar, Faouzi
Author: Makhlouf, Abdenacer
Author: Saadaoui, Nejib
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 721-761
Summary lang: English
.
Category: math
.
Summary: Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted ${\rm osp}(1,2)$ superalgebra and $q$-deformed Witt superalgebra. (English)
Keyword: Hom-Lie superalgebra
Keyword: derivation
Keyword: cohomology
Keyword: $q$-deformed superalgebra
MSC: 17A70
MSC: 17B56
MSC: 17B68
idZBL: Zbl 06282107
idMR: MR3125651
DOI: 10.1007/s10587-013-0049-6
.
Date available: 2013-10-07T12:06:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143486
.
Reference: [1] Aizawa, N., Sato, H.: $q$-deformation of the Virasoro algebra with central extension.Phys. Lett. B 256 (1991), 185-190. MR 1099971, 10.1016/0370-2693(91)90671-C
Reference: [2] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras.J. Lie Theory 21 (2011), 813-836. Zbl 1237.17003, MR 2917693
Reference: [3] Ammar, F., Makhlouf, A.: Hom-Lie superalgebras and Hom-Lie admissible superalgebras.J. Algebra 324 (2010), 1513-1528. Zbl 1258.17008, MR 2673748, 10.1016/j.jalgebra.2010.06.014
Reference: [4] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys..
Reference: [5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations.J. Algebra 295 (2006), 314-361. Zbl 1138.17012, MR 2194957, 10.1016/j.jalgebra.2005.07.036
Reference: [6] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations.Algebra Colloq. 6 (1999), 51-70. Zbl 0943.17007, MR 1680657
Reference: [7] Larsson, D., Silvestrov, S. D.: Quasi-hom-Lie algebras, central extensions and $2$-cocyclelike identities.J. Algebra 288 (2005), 321-344. MR 2146132, 10.1016/j.jalgebra.2005.02.032
Reference: [8] Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras.Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248. Zbl 1105.17005, MR 2184027
Reference: [9] Larsson, D., Silvestrov, S. D.: Quasi-deformations of $sl_2(\mathbb{F})$ using twisted derivations.Commun. Algebra 35 (2007), 4303-4318. MR 2372334, 10.1080/00927870701545127
Reference: [10] Larsson, D., Silvestrov, S. D.: Graded quasi-Lie algebras.Czechoslovak J. Phys. 55 (2005), 1473-1478. MR 2223838, 10.1007/s10582-006-0028-3
Reference: [11] Liu, K.: Characterizations of quantum Witt algebra.Lett. Math. Phys. 24 (1992), 257-265. MR 1172453, 10.1007/BF00420485
Reference: [12] Makhlouf, A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras.Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177. Zbl 1252.17001, MR 2648355
Reference: [13] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures.J. Gen. Lie Theory Appl. 2 (2008), 51-64. Zbl 1184.17002, MR 2399415, 10.4303/jglta/S070206
Reference: [14] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras.Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206. Zbl 1173.16019, MR 2509148
Reference: [15] Makhlouf, A., Silvestrov, S. D.: Notes on $1$-parameter formal deformations of Hom-associative and Hom-Lie algebras.Forum Math. 22 (2010), 715-759. Zbl 1201.17012, MR 2661446, 10.1515/forum.2010.040
Reference: [16] Scheunert, M.: Generalized Lie algebras.J. Math. Phys. 20 (1979), 712-720. Zbl 0423.17003, MR 0529734, 10.1063/1.524113
Reference: [17] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716.Springer Berlin (1979). MR 0537441, 10.1007/BFb0070929
Reference: [18] Scheunert, M., Zhang, R. B.: Cohomology of Lie superalgebras and their generalizations.J. Math. Phys. 39 (1998), 5024-5061. Zbl 0928.17023, MR 1643330, 10.1063/1.532508
Reference: [19] Sheng, Y.: Representations of Hom-Lie algebras.Algebr. Represent. Theory 15 (2012), 1081-1098. MR 2994017, 10.1007/s10468-011-9280-8
Reference: [20] Yau, D.: Enveloping algebras of Hom-Lie algebras.J. Gen. Lie Theory Appl. 2 (2008), 95-108. Zbl 1214.17001, MR 2399418, 10.4303/jglta/S070209
Reference: [21] Yau, D.: Hom-algebras and homology.J. Lie Theory 19 (2009), 409-421. Zbl 1252.17002, MR 2572137
Reference: [22] Yau, D.: Hom-bialgebras and comodule Hom-algebras.Int. Electron. J. Algebra 8 (2010), 45-64. Zbl 1253.16032, MR 2660540
Reference: [23] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras.J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. Zbl 1179.17001, MR 2539278
.

Files

Files Size Format View
CzechMathJ_63-2013-3_10.pdf 414.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo