Previous |  Up |  Next

Article

Title: Some generalizations of torsion-free Crawley groups (English)
Author: Goldsmith, Brendan
Author: Karimi, Fatemeh
Author: Aghdam, Ahad Mehdizadeh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 819-831
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group $G$ is said to be an Erdős group if for any pair of isomorphic pure subgroups $H,K$ with $G/H \cong G/K$, there is an automorphism of $G$ mapping $H$ onto $K$; it is said to be a weak Crawley group if for any pair $H, K$ of isomorphic dense maximal pure subgroups, there is an automorphism mapping $H$ onto $K$. We show that these classes are extensive and pay attention to the relationship of the Baer-Specker group to these classes. In particular, we show that the class of Crawley groups is strictly contained in the class of weak Crawley groups and that the class of Erdős groups is strictly contained in the class of weak Crawley groups. (English)
Keyword: Abelian group
Keyword: Crawley group
Keyword: weak Crawley group
Keyword: Erdős group
MSC: 20K10
MSC: 20K21
idZBL: Zbl 06282113
idMR: MR3125657
DOI: 10.1007/s10587-013-0055-8
.
Date available: 2013-10-07T12:11:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143492
.
Reference: [1] Corner, A. L. S., Göbel, R., Goldsmith, B.: On torsion-free Crawley groups.Q. J. Math. 57 (2006), 183-192. Zbl 1116.20035, MR 2236823, 10.1093/qmath/hai004
Reference: [2] Dugas, M., Irwin, J.: On pure subgroups of Cartesian products of integers.Result. Math. 15 (1989), 35-52. Zbl 0671.20052, MR 0979442, 10.1007/BF03322445
Reference: [3] Erdős, J.: Torsion-free factor groups of free abelian groups and a classification of torsion-free abelian groups.Publ. Math., Debrecen 5 (1957), 172-184. Zbl 0078.01602, MR 0100626
Reference: [4] Fuchs, L.: Abelian Groups.Publishing House of the Hungarian Academy of Sciences, Budapest (1958). Zbl 0091.02704, MR 0106942
Reference: [5] Fuchs, L.: Infinite Abelian Groups. Vol. I.Pure and Applied Mathematics 36 Academic Press, New York (1970). Zbl 0209.05503, MR 0255673
Reference: [6] Fuchs, L.: Infinite Abelian Groups. Vol. II.Pure and Applied Mathematics 36 Academic Press, New York (1973). Zbl 0257.20035, MR 0349869
Reference: [7] Goldsmith, B., Karimi, F.: On pure subgroups of the Baer-Specker group and weak Crawley groups.Result. Math. 64 (2013), 105-112. MR 3095130, 10.1007/s00025-012-0300-8
Reference: [8] Hill, P.: Equivalence theorems.Rocky Mt. J. Math. 23 (1993), 203-221. Zbl 0801.20036, MR 1212737, 10.1216/rmjm/1181072617
Reference: [9] Hill, P., West, J. Kirchner: Subgroup transitivity in abelian groups.Proc. Am. Math. Soc. 126 (1998), 1293-1303. MR 1443830, 10.1090/S0002-9939-98-04234-8
Reference: [10] Hill, P., Megibben, C.: Equivalence theorems for torsion-free groups.Fuchs, Laszlo et al. Abelian Groups, Proceedings of the 1991 Curaçao conference Lect. Notes Pure Appl. Math. 146 Marcel Dekker, New York 181-191 (1993). Zbl 0801.20036, MR 1217269
Reference: [11] Salce, L., Strüngmann, L.: Stacked bases for homogeneous completely decomposable groups.Commun. Algebra 29 (2001), 2575-2588. Zbl 1019.20022, MR 1845130, 10.1081/AGB-100002408
Reference: [12] R. B. Warfield, Jr.: Homomorphisms and duality for torsion-free groups.Math. Z. 107 (1968), 189-200. Zbl 0169.03602, MR 0237642, 10.1007/BF01110257
.

Files

Files Size Format View
CzechMathJ_63-2013-3_16.pdf 286.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo