Previous |  Up |  Next


power-moment; SL$_3(\mathbb Z)$-Kloosterman sum
Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL$_2$ and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL$_3$ have been considered, in which analogous GL$_3$-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL$_3(\mathbb Z)$. We give formulas for the first three moments and a nontrivial bound for the fourth.
[1] Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates. Ann. Math. (2) 130 (1989), 367-406. MR 1014928 | Zbl 0723.14017
[2] Bump, D., Friedberg, S., Goldfeld, D.: Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$. Acta Arith. 50 (1988), 31-89. MR 0945275
[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n, \mathbb R)$. With an appendix by Kevin A. Broughan. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). MR 2254662
[4] Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17 AMS, Providence, RI (1997). MR 1474964 | Zbl 0905.11023
[5] Kloosterman, H. D.: On the representation of numbers in the form $ax^2+by^2 +cz^2+dt^2$. Acta Math. 49 (1927), 407-464. DOI 10.1007/BF02564120 | MR 1555249
[6] Larsen, M.: Appendix to Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$, in The estimation of $SL_3(\mathbb Z)$ Kloosterman sums. Acta Arith. 50 (1988), 86-89. MR 0945275
Partner of
EuDML logo