Previous |  Up |  Next

Article

Title: On unitary convex decompositions of vectors in a $JB^{*}$-algebra (English)
Author: Siddiqui, Akhlaq A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 79-86
Summary lang: English
.
Category: math
.
Summary: By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital $JB^{*}$-algebra permits the vector decomposable as convex combination of fewer unitaries; certain $ C^{*}$-algebra results due to M. Rørdam have been extended to the general setting of $JB^{*}$-algebras. (English)
Keyword: $C^{*}$-algebra
Keyword: $JB^{*}$-algebra
Keyword: unit ball
Keyword: invertible element
Keyword: unitary element
Keyword: unitary isotope
Keyword: convex hull
Keyword: unitary rank
Keyword: unitary convex decomposition
MSC: 17C65
MSC: 46H70
MSC: 46L70
idZBL: Zbl 06321150
idMR: MR3118865
DOI: 10.5817/AM2013-2-79
.
Date available: 2013-10-14T13:39:04Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143495
.
Reference: [1] Braun, R., Kaup, W., Upmeier, H.: A holomorphic characterization of Jordan $C^{*}$–algebras.Math. Z. 161 (1978), 277–290. Zbl 0385.32002, MR 0493373, 10.1007/BF01214510
Reference: [2] Jacobson, N.: Structure and representations of Jordan algebras.AMS Providence, Rhode Island, 1968. Zbl 0218.17010, MR 0251099
Reference: [3] Kadison, R. V., Pedersen, G. K.: Means and convex combinations of unitary operators.Math. Scand. 57 (1985), 249–266. Zbl 0573.46034, MR 0832356
Reference: [4] Rørdam, M.: The theory of unitary rank and regular approximation.Ph.D. thesis, University of Pennsylvania, 1987.
Reference: [5] Rørdam, M.: Advances in the theory of unitary rank and regular approximations.Ann. of Math. (2) 128 (1988), 153–172. MR 0951510
Reference: [6] Siddiqui, A. A.: Computation of the $\lambda _{u}$–function in $JB^{*}$–algebras.submitted.
Reference: [7] Siddiqui, A. A.: Asymmetric decompositions of vectors in $JB^{*}$–algebras.Arch. Math. (Brno) 42 (2006), 159–166. Zbl 1164.46342, MR 2240353
Reference: [8] Siddiqui, A. A.: On unitaries in $JB^{*}$–algebras.Indian J. Math. 48 (1) (2006), 35–48. Zbl 1115.46058, MR 2229466
Reference: [9] Siddiqui, A. A.: Self–adjointness in unitary isotopes of $JB^{*}$–algebras.Arch. Math. 87 (2006), 350–358. Zbl 1142.46020, MR 2263481, 10.1007/s00013-006-1718-6
Reference: [10] Siddiqui, A. A.: Average of two extreme points in $JBW^{*}$–triples.Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 176–178. Zbl 1207.46046, MR 2376600, 10.3792/pjaa.83.176
Reference: [11] Siddiqui, A. A.: $JB^{*}$–algebras of topological stable rank $1$.Int. J. Math. Math. Sci. 2007 (2007), 24. MR 2306360, 10.1155/2007/37186
Reference: [12] Siddiqui, A. A.: A proof of the Russo–Dye theorem for $JB^{*}$–algebras.New York J. Math. 16 (2010), 53–60. Zbl 1231.46015, MR 2645985
Reference: [13] Siddiqui, A. A.: Convex combinations of unitaries in $JB^{*}$–algebras.New York J. Math. 17 (2011), 127–137. Zbl 1227.46035, MR 2781910
Reference: [14] Siddiqui, A. A.: The $\lambda _{u}$–function in $JB^{*}$–algebras.New York J. Math. 17 (2011), 139–147. Zbl 1227.46036, MR 2781911
Reference: [15] Wright, J. D. M.: Jordan $C^{*}$–algebras.Michigan Math. J. 24 (1977), 291–302. Zbl 0384.46040, MR 0487478
Reference: [16] Youngson, M. A.: A Vidav theorem for Banach Jordan algebras.Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272. Zbl 0392.46038, MR 0493372, 10.1017/S0305004100055092
.

Files

Files Size Format View
ArchMathRetro_049-2013-2_1.pdf 462.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo