[1] Busygin, S.: 
A new trust region technique for the maximum weight clique problem. Discrete Appl. Math. 154 (2002), 2006. 
MR 2257814 | 
Zbl 1111.90020 
[2] Demiralp, M.: 
High dimensional model representation and its application varieties. In: Proc. Fourth International Conference on Tools for Mathematical Modelling, St. Petersburg 2003, pp. 146-159. 
Zbl 1237.93093 
[3] Feil, K. S., Shah, N.: 
Volatility calibration using spline and high dimensional model representation models. Wilmott J. 1 (2009), 179-195. 
DOI 10.1002/wilj.18 
[4] Garivier, A., Cappé, O.: The KL-UCB algorithm for bounded stochastic bandits and beyond. In: Proc. 24th Annual Conference on Learning Theory, Budapest 2011.
[5] George, A., Powell, W. B., Kulkarni, S. R.: 
Value function approximation using multiple aggregation for multiattribute resource management. J. Machine Learning Res. 9 (2008), 2079-2111. 
Zbl 1225.68180 
[6] Gittins, J.: 
Bandit processes and dynamic allocation indices. J. Roy. Statist. Soc. Ser.B 41 (1979), 2, 148-177. 
MR 0547241 | 
Zbl 0411.62055 
[8] Hauskrecht, M.: 
Value-function approximations for partially observable markov decision processes. J. Artif. Internat. Res. 13 (2000), 33-94. 
MR 1781862 | 
Zbl 0946.68131 
[9] Jaakkola, T., Singh, S. P., Jordan, M. I.: Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. MIT Press, 1995.
[11] Kushner, H.: 
Introduction to Stochastic Control. Holt, Rinehart and Winston, New York 1970. 
MR 0280248 | 
Zbl 0293.93018 
[12] LeBlanc, M., Tibshirani, R.: 
Combining estimates in regression and classification. J. Amer. Statist. Assoc. 91 (1996), 1641-1650. 
MR 1439105 | 
Zbl 0881.62046 
[13] Li, G., Hu, J., Wang, S.-W., Georgopoulos, P. G., Schoendorf, J., Rabitz, H.: 
Random sampling-high dimensional model representation (rs-hdmr) and orthogonality of its different order component functions. J. Phys. Chem. A 110 (2006), 7, 2474-2485. 
DOI 10.1021/jp054148m 
[14] Luus, R.: 
Iterative Dynamic Programming. Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 2000. 
MR 1750212 | 
Zbl 1158.49038 
[17] Miller, W., Sutton, R., Werbos, P.: Neural Networks for Control. Neural Network Modeling and Connectionism. Mit Press, 1995.
[18] Olsson, C., Eriksson, A., Kahl, F.: Solving large scale binary quadratic problems: Spectral methods vs. semidefinite programming. In: Computer Vision and Pattern Recognition, 2007.
[19] Peterka, V.: 
Bayesian system identification. In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239-304. 
MR 0746139 | 
Zbl 0451.93059 
[20] Pištěk, M.: On implicit approximation of the bellman equation. In: 15th IFAC Symposium on System Identification, Saint-Malo 2009.
[21] Powell, W. B.: 
Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley-Interscience, 2007. 
MR 2347698 | 
Zbl 1242.90002 
[25] Schrijver, A.: 
Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley and Sons, 1998. 
MR 0874114 | 
Zbl 0970.90052 
[27] Sutton, R. S., Barto, A. G.: Reinforcement Learning: An Introduction. MIT Press, 1998.