Previous |  Up |  Next

Article

Title: Jordan- and Lie geometries (English)
Author: Bertram, Wolfgang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 5
Year: 2013
Pages: 275-293
Summary lang: English
.
Category: math
.
Summary: In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries. (English)
Keyword: Jordan algebra (triple system, pair)
Keyword: associative algebra (triple systems, pair)
Keyword: Lie algebra (triple system)
Keyword: graded Lie algebra
Keyword: symmetric space
Keyword: torsor (heap, groud, principal homogeneous space)
Keyword: homotopy and isotopy
Keyword: Grassmannian
Keyword: generalized projective geometry
MSC: 16-02
MSC: 16W10
MSC: 17C37
MSC: 20N10
MSC: 22A30
MSC: 51B25
MSC: 51P05
MSC: 81P05
idZBL: Zbl 06383790
idMR: MR3159327
DOI: 10.5817/AM2013-5-275
.
Date available: 2014-01-16T11:17:16Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143552
.
Reference: [1] Berger, M.: Les espaces symétriques non–compacts.Ann. Sci. ENS (1957). Zbl 0093.35602
Reference: [2] Bertram, W.: Jordan geometries by inversions.Preprint, 2013, http://arxiv.org/abs/1308.5888.
Reference: [3] Bertram, W.: The projective geometry of a group.arXiv: math.GR/1201.6201.
Reference: [4] Bertram, W.: The Geometry of Jordan and Lie Structures.Lecture Notes in Math., vol. 1754, Springer, Berlin, 2000. Zbl 1014.17024, 10.1007/b76884
Reference: [5] Bertram, W.: Generalized projective geometries: General theory and equivalence with Jordan structures.Advances in Geometry 3 (2002), 329–369. MR 1940443
Reference: [6] Bertram, W.: The geometry of null systems, Jordan algebras and von Staudt’s Theorem.Ann. Inst. Fourier 53 fasc. 1 (2003), 193–225. Zbl 1038.17023, MR 1973071, 10.5802/aif.1942
Reference: [7] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings.Mem. Amer. Math. Soc. 192 (900) (2008), x+202, arXiv: math.DG/0502168. Zbl 1144.58002, MR 2369581
Reference: [8] Bertram, W.: Homotopes and conformal deformations of symmetric spaces.J. Lie Theory 18 (2008), 301–333, math.RA/0606449. Zbl 1164.17021, MR 2431118
Reference: [9] Bertram, W.: Is there a Jordan geometry underlying quantum physics?.Int. J. Theor. Phys. 47 (2) (2008), 2754—2782, arXiv: math-ph/0801.3069. Zbl 1160.81398, MR 2475762, 10.1007/s10773-008-9724-z
Reference: [10] Bertram, W.: On the Hermitian projective line as a home for the geometry of Quantum Theory..AIP Conference Proceedings 1079, p. 14–25 (XXVII Workshop on Geometrical Methods in Physics, Bialowieza 2008), American Institute of Physics, New York, 2008. Zbl 1167.81394, MR 2757694
Reference: [11] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. I : Construction by algebras with two involutions.arXiv: math.DG/1011.2923.
Reference: [12] Bertram, W., Bieliavsky, P.: Homotopes of symmetric spaces. II : Structure Variety and Classification.arXiv: math.DG/1011.3161.
Reference: [13] Bertram, W., Glöckner, H., Neeb, K.–H.: Differential calculus over general base fields and rings.Exposition. Math. 22 (2004), 213–282, arXiv: math.GM/030330. Zbl 1099.58006, MR 2069671, 10.1016/S0723-0869(04)80006-9
Reference: [14] Bertram, W., Kinyon, M.: Associative geometries. I: Torsors, linear relations and grassmannians.J. Lie Theory 20 (2) (2010), 215–252, arXiv: math.RA/0903.5441. Zbl 1206.20074, MR 2681368
Reference: [15] Bertram, W., Kinyon, M.: Associative geometries. II: Involutions, the classical torsors, and their homotopes.J. Lie Theory 20 (2) (2010), 253–282, arXiv: math.RA/0909.4438. Zbl 1206.20075, MR 2681369
Reference: [16] Bertram, W., Neeb, K.–H.: Projective completions of Jordan pairs. I: The generalized projective geometry of a Lie algebra.J. Algebra 277 (2) (2004), 193–225, arXiv: math.RA/0306272. Zbl 1100.17012, MR 2067615
Reference: [17] Bertram, W., Neeb, K.–H.: Projective completions of Jordan pairs. Part II: Manifold structures and symmetric spaces (avec K.-H. Neeb).vec K.-H. Neeb), Geom. Dedicata 112 (1) (2005), 73–113, arXiv: math.GR/0401236. MR 2163891, 10.1007/s10711-004-4197-6
Reference: [18] Chenal, J.: Generalized flag geometries and manifolds associated to short Z-graded Lie algebras in arbitrary dimension.C. R. Math. Acad. Sci. Paris 347 (2009), 21–25, arXiv: 1007.4076v1 [math.RA]. MR 2536743, 10.1016/j.crma.2008.12.001
Reference: [19] Chu, Ch.–H.: Jordan Structures in Geometry and Analysis.Cambridge University Press, 2012. Zbl 1238.17001, MR 2885059
Reference: [20] Connes, A.: Non–commutative Geometry.Academic Press, 1994.
Reference: [21] Emch, G.: Mathematical and Conceptual Foundations of 20th Century Physics.North Holland, 1985.
Reference: [22] Faraut, J., Koranyi, A.: Analysis on Symmetric Cones.Clarendon Press, Oxford, 1994. Zbl 0841.43002
Reference: [23] Grgin, E., Petersen, A.: Algebraic implications of composability of physical systems.Comm. Math. Phys. 50 (1976), 177–188. Zbl 0358.17005, 10.1007/BF01617995
Reference: [24] : Jordan archive.Jordan preprint server) http://molle.fernuni-hagen.de/~loos/jordan/index.html.
Reference: [25] Kaneyuki, S.: On classification of parahermitian symmetric spaces.Tokyo J. Math. 8 (1985), 473–482. Zbl 0592.53042, 10.3836/tjm/1270151228
Reference: [26] Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications (reprint).eprint), Lecture Notes in Mat., vol. 1710, Springer, Berlin, 1999.
Reference: [27] Koufany, K.: Réalisation des espaces symétriques de type Cayley.C. R. Math. Acad. Sci. Paris 318 (1994), 425–428. Zbl 0839.53035
Reference: [28] Loos, O.: Symmetric Spaces I.Benjamin, New York, 1969. Zbl 0175.48601
Reference: [29] Loos, O.: Jordan triple systems, R-spaces and bounded symmetric domains.Bull. Amer. Math. Soc. 77 (1971), 558–561. Zbl 0228.32012, 10.1090/S0002-9904-1971-12753-2
Reference: [30] Loos, O.: Jordan Pairs.Lecture Notes in Math., vol. 460, Springer, Berlin, 1975. Zbl 0301.17003
Reference: [31] Loos, O.: Bounded Symmetric Domains and Jordan Pairs.University of California, Irvine, 1977, [See http://molle.fernuni-hagen.de/~loos/jordan/index.html].
Reference: [32] Loos, O.: Charakterisierung symmetrischer $R$–Räume durch ihre Einheitsgitter.Math. Z. 189 (1985), 211–226. Zbl 0583.53044, 10.1007/BF01175045
Reference: [33] McCrimmon, K.: A Taste of Jordan Algebras.Springer-Verlag, New York, 2004. Zbl 1044.17001, MR 2014924
Reference: [34] Nagano, Tadashi: Transformation groups on compact symmetric spaces.Trans. Amer. Math. Soc. 118 (1965), 428–453. 10.1090/S0002-9947-1965-0182937-8
Reference: [35] Springer, T. A.: Jordan Algebras and Algebraic Groups.Classics in Mathematics, Springer-Verlag, 1998, Reprint of the 1973 edition. Zbl 1024.17018
Reference: [36] Takeuchi, Masaru: Cell decompositions and Morse equalities on certain symmetric spaces.J. Fac. Sci. Univ. Tokyo Sect. I 12 (1965), 81–192.
Reference: [37] Upmeier, H.: Symmetric Banach Manifolds and Jordan $C^*$-algebras.North-Holland Math. Stud., North-Holland Publishing Co., Amsterdam, 1985.
Reference: [38] Upmeier, H.: Jordan algebras in analysis, operator theory, and quantum mechanics.CBMS Regional Conference Series in Mathematics, 67. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1987.
.

Files

Files Size Format View
ArchMathRetro_049-2013-5_2.pdf 653.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo