Previous |  Up |  Next


manifold; connection; metric
In [19] we proved a theorem which shows how to find, under particular assumptions guaranteeing metrizability (among others, recurrency of the curvature is necessary), all (at least local) pseudo-Riemannian metrics compatible with a given torsion-less linear connection without flat points on a two-dimensional affine manifold. The result has the form of an implication only; if there are flat points, or if curvature is not recurrent, we have no good answer in general, which can be also demonstrated by examples. Note that in higher dimension, the problem is not easy to solve. Here we try to apply this apparatus to the two main types (A and B from [9], [1]) of torsion-less locally homogeneous connections defined in open domains of 2-manifolds. We prove that in dimension two a symmetric linear connection with constant Christoffels is metrizable if and only if it is locally flat. On the other hand, in the class of connections of type B there are even non-flat metrizable connections.
[1] Arias–Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2–dimensional manifolds. Monatsh. Math. 153 (1) (2008), 1–18. DOI 10.1007/s00605-007-0494-0 | MR 2366132 | Zbl 1155.53009
[2] Eisenhart, L.P., Veblen, O.: The Riemann geometry and its generalization. Proc. London Math. Soc. 8 (1922), 19–23.
[3] Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin, Heidelberg, New York, 2005. MR 2165400 | Zbl 1083.53001
[4] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley–Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[5] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. DOI 10.1007/BF01110924 | Zbl 0234.53024
[6] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note Mat. 8 (1) (1988), 1–11. Zbl 0699.53038
[7] Kowalski, O., Opozda, B., Vlášek, Z.: Curvature homogeneity of affine connections on two-dimensional manifolds. Colloq. Math. 81 (1) (1999), 123–139. Zbl 0942.53019
[8] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2–dimensional manifolds. Monatsh. Math. 130 (2000), 109–125. DOI 10.1007/s006050070041 | Zbl 0993.53008
[9] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2–dimensional manifolds via group–theoretical approach. CEJM 2 (1) (2004), 87–102. MR 2041671 | Zbl 1060.53013
[10] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle. A. Wiley Intersc. Publ., New York, London, Sydney, 1975.
[11] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions. Cambridge Univ. Press, 1994.
[12] Olver, P. J.: Equivalence, Invariants and Symmetry. Cambridge: Univ. Press, 1995. Zbl 0837.58001
[13] Opozda, B.: On curvature homogeneous and locally homogeneous affine connections. Proc. Amer. Math. Soc. 124 (6) (1996), 1889–1893. DOI 10.1090/S0002-9939-96-03455-7 | Zbl 0864.53013
[14] Opozda, B.: A classification of locally homogeneous connections on 2–dimensional manifolds. Differential Geom. Appl. 21 (2004), 173–198. DOI 10.1016/j.difgeo.2004.03.005 | MR 2073824 | Zbl 1063.53024
[15] Petrov, A. Z.: Einstein Spaces. Moscow, 1961, in Russian.
[16] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras. Acta Phys. Debrecina 42 (2008), 39–48.
[17] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Arch. Math. (Brno) 44 (2008), 339–348. Zbl 1212.53021
[18] Vanžurová, A.: Metrization of connections with regular curvature. Arch. Math. (Brno) 45 (4) (2009), 325–333. MR 2591685 | Zbl 1212.53020
[19] Vanžurová, A., Žáčková, P.: Metrizability of connections on two–manifolds. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 48 (2009), 157–170. MR 2641956 | Zbl 1195.53023
[20] Vanžurová, A., Žáčková, P.: Metrization of linear connections. Aplimat 2009: 8th International Conference Proceedings 2 (2009), 151–163.
Partner of
EuDML logo