Previous |  Up |  Next

Article

Title: Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings (English)
Author: Bhat, Vijay Kumar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1049-1056
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring. We recall that $R$ is called a near pseudo-valuation ring if every minimal prime ideal of $R$ is strongly prime. Let now $\sigma $ be an automorphism of $R$ and $\delta $ a $\sigma $-derivation of $R$. Then $R$ is said to be an almost $\delta $-divided ring if every minimal prime ideal of $R$ is $\delta $-divided. Let $R$ be a Noetherian ring which is also an algebra over $\mathbb {Q}$ ($\mathbb {Q}$ is the field of rational numbers). Let $\sigma $ be an automorphism of $R$ such that $R$ is a $\sigma (*)$-ring and $\delta $ a $\sigma $-derivation of $R$ such that $\sigma (\delta (a)) = \delta (\sigma (a))$ for all $a \in R$. Further, if for any strongly prime ideal $U$ of $R$ with $\sigma (U) = U$ and $\delta (U)\subseteq \delta $, $U[x; \sigma , \delta ]$ is a strongly prime ideal of $R[x; \sigma , \delta ]$, then we prove the following: (1) $R$ is a near pseudo valuation ring if and only if the Ore extension $R[x; \sigma ,\delta ]$ is a near pseudo valuation ring. (2) $R$ is an almost $\delta $-divided ring if and only if $R[x;\sigma ,\delta ]$ is an almost $\delta $-divided ring. (English)
Keyword: Ore extension
Keyword: automorphism
Keyword: derivation
Keyword: minimal prime
Keyword: pseudo-valuation ring
Keyword: near pseudo-valuation ring
MSC: 16N40
MSC: 16P40
MSC: 16S36
idZBL: Zbl 1299.16020
idMR: MR3165514
DOI: 10.1007/s10587-013-0071-8
.
Date available: 2014-01-28T14:16:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143616
.
Reference: [1] Anderson, D. F.: Comparability of ideals and valuation overrings.Houston J. Math. 5 (1979), 451-463. Zbl 0407.13001, MR 0567906
Reference: [2] Anderson, D. F.: When the dual of an ideal is a ring.Houston J. Math. 9 (1983), 325-332. Zbl 0526.13015, MR 0719090
Reference: [3] Badawi, A.: On divided commutative rings.Commun. Algebra 27 (1999), 1465-1474. Zbl 0923.13001, MR 1669131, 10.1080/00927879908826507
Reference: [4] Badawi, A.: On domains which have prime ideals that are linearly ordered.Commun. Algebra 23 (1995), 4365-4373. Zbl 0843.13007, MR 1352538, 10.1080/00927879508825469
Reference: [5] Badawi, A.: On $\phi$-pseudo-valuation Rings. Advances in Commutative Ring Theory.D. E. Dobbs et al. Proceedings of the 3rd International Conference, Fez, Morocco Lect. Notes Pure Appl. Math. 205 Marcel Dekker, New York (1999), 101-110. MR 1767453
Reference: [6] Badawi, A.: On pseudo-almost valuation domains.Commun. Algebra 35 (2007), 1167-1181. Zbl 1113.13001, MR 2313658, 10.1080/00927870601141951
Reference: [7] Badawi, A., Anderson, D. F., Dobbs, D. E.: Pseudo-valuation Rings. Commutative Ring Theory.P.-J. Cahen et al. Proceedings of the 2nd International Conference, Fes, Morocco, June 5-10, 1995. Lect. Notes Pure Appl. Math. 185 Marcel Dekker, New York (1997), 57-67. MR 1422466
Reference: [8] Badawi, A., Houston, E.: Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains.Commun. Algebra 30 (2002), 1591-1606. Zbl 1063.13017, MR 1894030, 10.1081/AGB-120013202
Reference: [9] Bell, H. E., Mason, G.: On derivations in near-rings and rings.Math. J. Okayama Univ. 34 (1992), 135-144. Zbl 0810.16042, MR 1272613
Reference: [10] Bhat, V. K.: A note on completely prime ideals of Ore extensions.Int. J. Algebra Comput. 20 (2010), 457-463. Zbl 1194.16020, MR 2658421, 10.1142/S021819671000573X
Reference: [11] Bhat, V. K.: On near pseudo valuation rings and their extensions.Int. Electron. J. Algebra (electronic only) 5 (2009), 70-77. Zbl 1187.13017, MR 2471380
Reference: [12] Bhat, V. K.: Polynomial rings over pseudovaluation rings.Int. J. Math. Math. Sci. 2007 (2007), Article ID 20138, 6 pages. Zbl 1167.16021, MR 2336139
Reference: [13] Bhat, V. K., Kumari, N.: On Ore extensions over near pseudo valuation rings.Int. J. Math. Game Theory Algebra 20 (2011), 69-77. MR 2908253
Reference: [14] Bhat, V. K., Kumari, N.: Transparency of $\sigma(\ast)$-rings and their extensions.Int. J. Algebra 2 (2008), 919-924. MR 2481211
Reference: [15] Goodearl, K. R., Jr., R. B. Warfield: An Introduction to Noncommutative Noetherian Rings.London Mathematical Society Student Texts 16 Cambridge University Press, Cambridge (1989). Zbl 0679.16001, MR 1020298
Reference: [16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains.Pac. J. Math. 75 (1978), 137-147. Zbl 0416.13014, MR 0485811, 10.2140/pjm.1978.75.137
Reference: [17] Krempa, J.: Some examples of reduced rings.Algebra Colloq. 3 (1996), 289-300. Zbl 0859.16019, MR 1422968
Reference: [18] Kwak, T. K.: Prime radicals of skew polynomial rings.Int. J. Math. Sci. 2 (2003), 219-227. Zbl 1071.16024, MR 2061508
Reference: [19] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings.With the cooperation of L. W. Small. Reprinted with corrections from the 1987 original. Graduate Studies in Mathematics 30 American Mathematical Society, Providence (2001). Zbl 0980.16019, MR 1811901
.

Files

Files Size Format View
CzechMathJ_63-2013-4_14.pdf 234.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo