Previous |  Up |  Next

Article

Title: Global behavior of a third order rational difference equation (English)
Author: Abo-Zeid, Raafat
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 1
Year: 2014
Pages: 25-37
Summary lang: English
.
Category: math
.
Summary: In this paper, we determine the forbidden set and give an explicit formula for the solutions of the difference equation $$x_{n+1}=\frac {ax_{n}x_{n-1}}{-bx_{n}+ cx_{n-2}},\quad n\in \mathbb {N}_0 $$ where $a$, $b$, $c$ are positive real numbers and the initial conditions $x_{-2}$, $x_{-1}$, $x_0$ are real numbers. We show that every admissible solution of that equation converges to zero if either $a<c$ or $a>c$ with ${(a-c)}/{b}<1$. \endgraf When $a>c$ with ${(a-c)}/{b}>1$, we prove that every admissible solution is unbounded. Finally, when $a=c$, we prove that every admissible solution converges to zero. (English)
Keyword: difference equation
Keyword: forbidden set
Keyword: periodic solution
Keyword: unbounded solution
MSC: 39A20
MSC: 39A21
MSC: 39A23
MSC: 39A30
idZBL: Zbl 06362241
idMR: MR3231428
DOI: 10.21136/MB.2014.143635
.
Date available: 2014-03-20T08:26:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143635
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities. Theory, Methods, and Applications.Pure and Applied Mathematics 155 Marcel Dekker, New York (1992). Zbl 0925.39001, MR 1155840
Reference: [2] Aloqeili, M.: Dynamics of a rational difference equation.Appl. Math. Comput. 176 (2006), 768-774. Zbl 1100.39002, MR 2232069, 10.1016/j.amc.2005.10.024
Reference: [3] Andruch-Sobiło, A., Migda, M.: Further properties of the rational recursive sequence $x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}$.Opusc. Math. 26 (2006), 387-394. Zbl 1131.39003, MR 2280266
Reference: [4] Andruch-Sobiło, A., Migda, M.: On the rational recursive sequence $x_{n+1}=\frac{ax_{n-1}}{b+cx_{n}x_{n-1}}$.Tatra Mt. Math. Publ. 43 (2009), 1-9. MR 2588871
Reference: [5] Berg, L., Stević, S.: On difference equations with powers as solutions and their connection with invariant curves.Appl. Math. Comput. 217 (2011), 7191-7196. Zbl 1260.39002, MR 2781112, 10.1016/j.amc.2011.02.005
Reference: [6] Berg, L., Stević, S.: On some systems of difference equations.Appl. Math. Comput. 218 (2011), 1713-1718. Zbl 1243.39009, MR 2831394, 10.1016/j.amc.2011.06.050
Reference: [7] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures.Advances in Discrete Mathematics and Applications 5 Chapman and Hall/HRC, Boca Raton (2008). Zbl 1129.39002, MR 2363297
Reference: [8] Grove, E. A., Ladas, G.: Periodicities in Nonlinear Difference Equations.Advances in Discrete Mathematics and Applications 4 Chapman and Hall/CRC, Boca Raton (2005). Zbl 1078.39009, MR 2193366
Reference: [9] Iričanin, B., Stević, S.: On some rational difference equations.Ars Comb. 92 (2009), 67-72. Zbl 1224.39014, MR 2532566
Reference: [10] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method.Differential Equations Dynam. Systems 1 (1993), 289-294. Zbl 0868.39002, MR 1259169
Reference: [11] Kocić, V. L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications.Mathematics and Its Applications 256 Kluwer Academic Publishers, Dordrecht (1993). MR 1247956
Reference: [12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems.J. Math. Anal. Appl. 235 (1999), 151-158. Zbl 0933.37016, MR 1758674, 10.1006/jmaa.1999.6384
Reference: [13] Kulenović, M. R. S., Ladas, G.: Dynamics of Second Order Rational Difference Equations.With Open Problems and Conjectures Chapman and Hall/HRC, Boca Raton (2002). Zbl 0981.39011, MR 1935074
Reference: [14] Levy, H., Lessman, F.: Finite Difference Equations.Reprint of the 1961 edition. Dover Publications New York (1992). MR 1217083
Reference: [15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms.J. Difference Equ. Appl. 15 (2009), 215-224. Zbl 1169.39006, MR 2498770, 10.1080/10236190802054126
Reference: [16] Stević, S.: On a system of difference equations.Appl. Math. Comput. 218 (2011), 3372-3378. Zbl 1256.39008, MR 2851439, 10.1016/j.amc.2011.08.079
Reference: [17] Stević, S.: On a system of difference equations with period two coefficients.Appl. Math. Comput. 218 (2011), 4317-4324. Zbl 1256.39008, MR 2862101, 10.1016/j.amc.2011.10.005
Reference: [18] Stević, S.: On a third-order system of difference equations.Appl. Math. Comput. 218 (2012), 7649-7654. Zbl 1242.39011, MR 2892731, 10.1016/j.amc.2012.01.034
Reference: [19] Stević, S.: On the difference equation $x_n=x_{n-2}/(b_n+c_nx_{n-1}x_{n-2})$.Appl. Math. Comput. 218 (2011), 4507-4513. MR 2862122
Reference: [20] Stević, S.: On some solvable systems of difference equations.Appl. Math. Comput. 218 (2012), 5010-5018. Zbl 1253.39011, MR 2870025, 10.1016/j.amc.2011.10.068
Reference: [21] Stević, S.: On positive solutions of a $(k +1)$th order difference equation.Appl. Math. Lett. 19 (2006), 427-431. Zbl 1095.39010, MR 2213143, 10.1016/j.aml.2005.05.014
Reference: [22] Stević, S.: More on a rational recurrence relation.Appl. Math. E-Notes (electronic only) 4 (2004), 80-85. Zbl 1069.39024, MR 2077785
.

Files

Files Size Format View
MathBohem_139-2014-1_2.pdf 253.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo