Previous |  Up |  Next

Article

Title: Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations (English)
Author: Cavalheiro, Albo Carlos
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 1
Year: 2014
Pages: 51-63
Summary lang: English
.
Category: math
.
Summary: In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations \begin{align*}{\Delta }(v(x)\, {\vert {\Delta }u\vert }^{p-2}{\Delta }u) &-\sum _{j=1}^n D_j{\bigl [}{\omega }(x) {\mathcal{A}}_j(x, u, {\nabla }u){\bigr ]}\\ =&\ f_0(x) - \sum _{j=1}^nD_jf_j(x)\,, \quad \mbox {in}\quad {\Omega }\end{align*} in the setting of the weighted Sobolev spaces. (English)
Keyword: degenerate nolinear elliptic equations
Keyword: weighted Sobolev spaces
MSC: 35J60
MSC: 35J70
idZBL: Zbl 06391565
idMR: MR3194768
DOI: 10.5817/AM2014-1-51
.
Date available: 2014-04-04T07:19:45Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143719
.
Reference: [1] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate p-Laplacian.Opuscula Math. 33 (2013), no. 3, 439–453. MR 3046406, 10.7494/OpMath.2013.33.3.439
Reference: [2] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems.J. Appl. Anal. 19 (2013), 41–54. Zbl 1278.35086, MR 3069764, 10.1515/jaa-2013-0003
Reference: [3] Chipot, M.: Elliptic Equations: An Introductory Course.Birkhäuser, Berlin, 2009. Zbl 1171.35003, MR 2494977
Reference: [4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.Walter de Gruyter, Berlin, 1997. Zbl 0894.35002, MR 1460729
Reference: [5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations (1982), 77–116. Zbl 0498.35042, MR 0643158, 10.1080/03605308208820218
Reference: [6] Fučik, S., John, O., Kufner, A.: Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis.Noordhoff International Publishing, Leyden; Academia, Prague, 1977. MR 0482102
Reference: [7] Garcia-Cuerva, J., de Francia, J.L. Rubio: Weighted Norm Inequalities and Related Topics.North-Holland Math. Stud. 116 (1985). MR 0807149
Reference: [8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order.second ed., Springer, New York, 1983. MR 0737190
Reference: [9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Math. Monographs, Clarendon Press, 1993. Zbl 0780.31001, MR 1207810
Reference: [10] Kufner, A.: Weighted Sobolev Spaces.John Wiley and Sons, 1985. Zbl 0579.35021, MR 0802206
Reference: [11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight.Mediterranean J. Math. 4 (2007), 73–86. Zbl 1150.35072, MR 2310704, 10.1007/s00009-007-0104-3
Reference: [13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.Academic Press, São Diego, 1986. Zbl 0621.42001, MR 0869816
Reference: [14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces.Lecture Notes in Math., vol. 1736, Springer-Verlag, 2000. Zbl 0949.31006, MR 1774162
Reference: [15] Zeidler, E.: Nonlinear Functional Analysis and its Applications.vol. II/B, Springer-Verlag, 1990. Zbl 0684.47029, MR 1033498
Reference: [16] Zeidler, E.: Nonlinear Functional Analysis and its Applications.vol. I, Springer-Verlag, 1990. Zbl 0684.47029
.

Files

Files Size Format View
ArchMathRetro_050-2014-1_5.pdf 496.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo