[3] Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di: Robust regulation via sliding modes of a rotary inverted pendulum. In: Preprints 3rd IFAC Symposium on Robust Control Design, ÚTIA AV ČR, Praha 2000.
[4] Attia, S. A., Azhmyakov, V., Raisch, J.: 
On an optimization problem for a class of impulsive hybrid systems. In: Discrete Event Dynamical Systems, 2009. 
MR 2609675 | 
Zbl 1197.49038 
[5] Azhmyakov, V., Raisch, J.: 
Convex control systems and convex optimal control problems with constraints. IEEE Trans. Automat. Control 53 (2008), 993-998. 
DOI 10.1109/TAC.2008.919848 | 
MR 2419445 
[6] Azhmyakov, V., Boltyanski, V. G., Poznyak, A.: 
Optimal control of impulsive hybrid systems. Nonlinear Anal.: Hybrid Systems 2 (2008), 1089-1097. 
MR 2478392 | 
Zbl 1163.49038 
[7] Azhmyakov, V., Galvan-Guerra, R., Egerstedt, M.: Hybrid LQ-optimization using dynamic programming. In: Proc. 2009 American Control Conference, St. Louis 2009, pp. 3617-3623.
[8] Azhmyakov, V., Egerstedt, M., Fridman, L., Poznyak, A.: Continuity properties of nonlinear affine control systems: applications to hybrid and sliding mode dynamics. In: Proc. 2009 IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza 2009, pp. 204-209.
[9] Azhmyakov, V., Boltyanski, V. G., Poznyak., A.: 
The dynamic programming approach to multi-model robust optimization. Nonlinear Anal.: Theory, Methods Applications 72 (2010), 1110-1119. 
MR 2579373 
[10] Azhmyakov, V.: Optimal control of sliding mode processes: A general approach. In: Proc. 11th International Workshop on Variable Structure Systems, Mexico City 2010, pp. 504-509.
[11] Basin, V. Azhmyakov M., García, A. E. Gil: A general approach to optimal control processes associated with a class of discontinuous control systems: Applications to the sliding mode dynamics. In: Proc. 2012 IEEE International Conference on Control Applications, Dubrovnik 2012, pp. 1154-1159.
[12] Bartolini, G., Fridman, L., Pisano, A., (eds.), E. Usai: 
Modern Sliding Mode Control Theory. Lecture Notes in Control and Inform. Sci. 375, Springer, Berlin 2008. 
MR 2435347 | 
Zbl 1140.93005 
[14] Boiko, I.: 
Discontinuous Control Systems Frequency-Domain Analysis and Design. Birkhauser, New York 2009. 
MR 2683127 | 
Zbl 1165.93002 
[15] Boiko, I., Fridman, L., Pisano, A., Usai, E.: 
On the transfer properties of the ``generalized sub-optimal" second-order sliding mode control algorithm. IEEE Trans. Automat. Control 54 (2009), 399-403. 
DOI 10.1109/TAC.2008.2008361 | 
MR 2491973 
[16] Čelikovský, S.: 
Numerical algorithm for nonsmooth stabilization of triangular form systems. Kybernetika 32 (1996), 261-274. 
MR 1438219 | 
Zbl 0873.93074 
[17] Branicky, M. S., Borkar, V. S., Mitter, S. K.: 
A unifed framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Control 43 (1998), 31-45. 
DOI 10.1109/9.654885 | 
MR 1604250 
[18] Caines, P., Egerstedt, M., Malhame, R., Schoellig, A.: 
A hybrid Bellman equation for bimodal systems. Lecture Notes in Computer Sci. 4416, Springer, Berlin 2007, pp. 656-659. 
DOI 10.1007/978-3-540-71493-4_54 | 
Zbl 1221.49054 
[21] Egerstedt, M., Wardi, Y., Axelsson, H.: 
Transition-time optimization for switched-mode dynamical systems. IEEE Trans. Automat. Control 51 (2006), 110-115. 
DOI 10.1109/TAC.2005.861711 | 
MR 2192797 
[22] Fattorini, H. O.: 
Infinite-Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge 1999. 
MR 1669395 | 
Zbl 1200.49001 
[23] Ferrara, A., Rubbagoti, M.: 
A sub-optimal second order sliding mode controller for systems with saturating actuators. IEEE Trans. Automat. Control 54 (2009), 1082-1087. 
DOI 10.1109/TAC.2008.2010992 | 
MR 2518127 
[24] Filippov, A. F.: 
Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht 1988. 
Zbl 1098.34006 
[25] Gallardo-Hernández, A. G., Fridman, L., Islas-Andrade, S., Shtessel, Y.: Quasi-continuous high order sliding modes controllers applied to glucose-insulin regulatory system models. In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2208-2213.
[27] Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di: Sliding mode observer for switched linear systems. In: Proc. 2011 IEEE Conference on Automation Science and Engineering, IEEE Conference on Automation Science and Engineering, Trieste 2011.
[28] Haddad, W. M., Chellaboina, V.: 
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, New Jersey 2008. 
MR 2381711 | 
Zbl 1142.34001 
[33] Khalil, H. K.: 
Nonlinear Systems. Prentice Hall, New Jersey 2001. 
Zbl 1194.93083 
[34] Levant, A.: 
Universal SISO sliding-mode controllers with finite-time convergence. IEEE Trans. Automat. Control 46 (2001), 1447-1451. 
DOI 10.1109/9.948475 | 
MR 1853689 
[36] Orlov, Y.: 
Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions. Springer, New York 2008. 
MR 2731468 | 
Zbl 1180.37004 
[37] Paden, B. E., Sastry, S. S.: 
Calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulator. IEEE Trans. Circuits Systems 34 (1987), 73-82. 
DOI 10.1109/TCS.1987.1086038 | 
MR 0871547 
[38] Poznyak, A.: Advanced Mathematical Tools for Automatic Control Engineers. Elsevier, Amsterdam 2008.
[40] Pytlak, R.: 
Numerical Methods for Optimal Control Problems with State Constraints. Springer-Verlag, Berlin 1999. 
MR 1713434 | 
Zbl 0928.49002 
[42] Ramos-Velasco, L. E., Ruiz-León, J. J., Čelikovský, S.: 
Rotary inverted pendulum: Trajectory tracking via nonlinear control techniques. Kybernetika 38 (2002), 217-232. 
MR 1916453 | 
Zbl 1265.93138 
[44] Shaikh, M. S., Caines, P. E.: 
On the hybrid optimal control problem: theory and algorithms. IEEE Trans. Automat. Control 52 (2007), 1587-1603. 
DOI 10.1109/TAC.2007.904451 | 
MR 2352436