Previous |  Up |  Next

Article

Keywords:
algebraic bound; basic bound; copula; Diophantine equation; Fréchet class; pointed convex polyhedral cone
Summary:
Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility and propose tools for an explicit description of the basic bounds of simple Fréchet classes.
References:
[1] Contejean, E., Devie, H.: An efficient incremental algorithm for solving system of linear Diophantine equations. Inform. and Comput. 113 (1994), 1, 143-172. DOI 10.1006/inco.1994.1067 | MR 1283022
[2] Embrechts, P., Lindskog, F., McNeil, A.: Modelling dependence with copulas and applications to risk management. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier/North-Holland 2003.
[3] Embrechts, P.: Copulas: A personal view. J. Risk and Insurance 76 (2009), 3, 639-650. DOI 10.1111/j.1539-6975.2009.01310.x
[4] Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997. MR 1462613 | Zbl 0990.62517
[5] Nelsen, R. B.: Introduction to Copulas. Second edition. Springer-Verlag, New York 2006. MR 2197664
[6] Sebö, A.: Hilbert bases, Carathéodory's theorem and combinatorial optimization. In: Integer Programming and Combinatorial Optimization (R. Kannan and W. Pulleyblanck, eds.), University of Waterloo Press, Waterloo 1990, pp. 431-456.
[7] Skřivánek, J.: Bounds of general Fréchet classes. Kybernetika 48 (2012), 1, 130-143. MR 2932932 | Zbl 1251.60015
[8] Stanley, R. P.: Enumerative Combinatorics 1. Second edition. Cambridge University Press, New York 2012. MR 2868112
[9] Tomás, A. P., Filgueiras, M.: An algorithm for solving systems of linear Diophantine equations in naturals. In: Progress in Artificial Intelligence (Coimbra) (E. Costa and A. Cardoso, eds.), Lecture Notes in Comput. Sci. 1323, Springer-Verlag, Berlin 1997, pp. 73-84. MR 1703009 | Zbl 0884.11020
Partner of
EuDML logo