[1] Abate, J., Choudhury, G. L., Whitt, W.:
An introduction to numerical transform inversion and its application to probability models. In: Computational Probability (W. Grassmann, ed.), Kluwer, Boston 2000, pp. 257-323.
Zbl 0945.65008
[4] Bratiichuk, M. S., Kempa, W. M.:
Application of the superposition of renewal processes to the study of batch arrival queues. Queueing Syst. 44 (2003), 51-67.
MR 1989866
[5] Bratiichuk, M. S., Kempa, W. M.:
Explicit formulae for the queue length distribution of batch arrival systems. Stoch. Models 20 (2004), 4, 457-472.
DOI 10.1081/STM-200033115 |
MR 2094048
[10] Kempa, W. M.:
On departure process in the batch arrival queue with single vacation and setup time. Ann. UMCS, AI 10 (2010), 1, 93-102.
MR 3116951 |
Zbl 1284.60162
[11] Kempa, W. M.:
Characteristics of vacation cycle in the batch arrival queueing system with single vacations and exhaustive service. Internat. J. Appl. Math. 23 (2010), 4, 747-758.
MR 2731457 |
Zbl 1208.60096
[12] Kempa, W. M.:
On main characteristics of the $M/M/1/N$ queue with single and batch arrivals and the queue size controlled by AQM algorithms. Kybernetika 47 (2011), 6, 930-943.
MR 2907852 |
Zbl 1241.90035
[13] Kempa, W. M.:
The virtual waiting time in a finite-buffer queue with a single vacation policy. Lecture Notes Comp. Sci. 7314 (2012), 47-60.
DOI 10.1007/978-3-642-30782-9_4
[15] Takagi, H.:
Queueing Analysis. A Foundation of Performance Evaluation. Volume 1: Vacation and Priority Systems. Part 1. North-Holland, Amsterdam 1991.
MR 1149382 |
Zbl 0744.60114
[16] Tang, Y., Tang, X.:
The queue-length distribution for $M^{x}/G/1$ queue with single server vacation. Acta Math. Sci. (Eng. Ed.) 20 (2000), 3, 397-408.
MR 1793213 |
Zbl 0984.60097
[17] Tian, N., Zhang, Z. G.:
Vacation Queueing Models. Theory and Applications. Springer, New York 2006.
MR 2248264 |
Zbl 1104.60004