Title:

Seeable matter; unseeable antimatter (English) 
Author:

Dixon, Geoffrey 
Language:

English 
Journal:

Commentationes Mathematicae Universitatis Carolinae 
ISSN:

00102628 (print) 
ISSN:

12137243 (online) 
Volume:

55 
Issue:

3 
Year:

2014 
Pages:

381386 
Summary lang:

English 
. 
Category:

math 
. 
Summary:

The universe we see gives every sign of being composed of matter. This is considered a major unsolved problem in theoretical physics. Using the mathematical modeling based on the algebra $\bold T:=\bold C\otimes \bold H \otimes \bold O$, an interpretation is developed that suggests that this seeable universe is not the whole universe; there is an unseeable part of the universe composed of antimatter galaxies and stuff, and an extra 6 dimensions of space (also unseeable) linking the matter side to the antimatterat the very least. (English) 
Keyword:

division algebras 
Keyword:

spacetime model 
MSC:

15A90 
MSC:

17A35 
MSC:

22E70 
MSC:

81P10 
MSC:

81R05 
MSC:

81V22 
idZBL:

Zbl 06391548 
idMR:

MR3225615 
. 
Date available:

20150119T10:54:11Z 
Last updated:

20161003 
Stable URL:

http://hdl.handle.net/10338.dmlcz/143813 
. 
Reference:

[1] Dixon G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics.Kluwer, Dordrecht, 1994. Zbl 0807.15024, MR 1307379 
Reference:

[2] Dixon G.M.: Division Algebras, Lattices, Physics, Windmill Tilting.CreateSpace, 2011. 
Reference:

[3] Baez J.: The octonions.Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl 1026.17001, MR 1886087, 10.1090/S027309790100934X 
Reference:

[4] Conway J.H., Smith D.A.: On Quaternions and Octonions.A K Peters, Natick, MA, 2003. Zbl 1098.17001, MR 1957212 
Reference:

[5] Günaydin M., Gürsey F.: Quark structure and octonions.J. Math. Phys. 14 (1973), 1651. MR 0329463, 10.1063/1.1666240 
Reference:

[6] Dixon G.M.: Division algebras: family replication.J. Math. Phys. 45 (2004), 3878. Zbl 1071.81050, MR 2095677, 10.1063/1.1786682 
Reference:

[7] Dixon G.M.: http://www.7stones.com.. 
Reference:

[8] Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism.Ann. Math. 35 (1934), 29–64. Zbl 0008.42103, MR 1503141, 10.2307/1968117 
Reference:

[9] Furey C.: Unified theory of ideals.Phys. Rev. D 86 (2012). 10.1103/PhysRevD.86.025024 
. 