Previous |  Up |  Next

Article

Title: On the eigenvalues of a Robin problem with a large parameter (English)
Author: Filinovskiy, Alexey
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 341-352
Summary lang: English
.
Category: math
.
Summary: We consider the Robin eigenvalue problem $\Delta u+\lambda u=0$ in $\Omega $, ${\partial u}/{\partial \nu }+\alpha u=0$ on $\partial \Omega $ where $\Omega \subset \mathbb R^n$, $n \geq 2$ is a bounded domain and $\alpha $ is a real parameter. We investigate the behavior of the eigenvalues $\lambda _k (\alpha )$ of this problem as functions of the parameter $\alpha $. We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative $\lambda _1'(\alpha )$. Assuming that the boundary $\partial \Omega $ is of class $C^2$ we obtain estimates to the difference $\lambda _k^D-\lambda _k(\alpha )$ between the $k$-th eigenvalue of the Laplace operator with Dirichlet boundary condition in $\Omega $ and the corresponding Robin eigenvalue for positive values of $\alpha $ for every $k=1,2,\dots $. (English)
Keyword: Laplace operator
Keyword: Robin boundary condition
Keyword: eigenvalue
Keyword: large parameter
MSC: 35J05
MSC: 35P15
idZBL: Zbl 06362263
idMR: MR3238844
DOI: 10.21136/MB.2014.143859
.
Date available: 2014-07-14T08:38:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143859
.
Reference: [1] Bandle, C., Sperb, R. P.: Application of Rellich's perturbation theory to a classical boundary and eigenvalue problem.Z. Angew. Math. Phys. 24 (1973), 709-720. MR 0338535, 10.1007/BF01597075
Reference: [2] Courant, R., Hilbert, D.: Methoden der mathematischen Physik I.German Springer, Berlin (1968). Zbl 0156.23201, MR 0344038
Reference: [3] Daners, D., Kennedy, J. B.: On the asymptotic behaviour of the eigenvalues of a Robin problem.Differ. Integral Equ. 23 (2010), 659-669. Zbl 1240.35370, MR 2654263
Reference: [4] Filinovskiy, A. V.: Asymptotic behavior of the first eigenvalue of the Robin problem.On the seminar on qualitative theory of differential equations at Moscow State University, Differ. Equ. 47 (2011), 1680-1696. DOI:10.1134/S0012266111110152. 10.1134/S0012266111110152
Reference: [5] Giorgi, T., Smits, R. G.: Monotonicity results for the principal eigenvalue of the generalized Robin problem.Ill. J. Math. 49 (2005), 1133-1143. Zbl 1089.35038, MR 2210355, 10.1215/ijm/1258138130
Reference: [6] Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators.Birkhäuser, Basel (2006). Zbl 1109.35081, MR 2251558
Reference: [7] Kato, T.: Perturbation Theory for Linear Operators.Springer, Berlin (1995). Zbl 0836.47009, MR 1335452
Reference: [8] Kondrat'ev, V. A., Landis, E. M.: Qualitative theory of second order linear partial differential equations.Russian Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 32 (1988), 99-215. Zbl 0656.35012, MR 1133457
Reference: [9] Lacey, A. A., Ockendon, J. R., Sabina, J.: Multidimensional reaction diffusion equations with nonlinear boundary conditions.SIAM J. Appl. Math. 58 (1998), 1622-1647. Zbl 0932.35120, MR 1637882, 10.1137/S0036139996308121
Reference: [10] Lou, Y., Zhu, M.: A singularly perturbed linear eigenvalue problem in $C^1$ domains.Pac. J. Math. 214 (2004), 323-334. Zbl 1061.35061, MR 2042936, 10.2140/pjm.2004.214.323
Reference: [11] Mikhaĭlov, V. P.: Partial Differential Equations.Russian Nauka, Moskva (1983).
Reference: [12] Sperb, R. P.: Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran.German Z. Angew. Math. Phys. 23 (1972), 231-244. Zbl 0246.73072, MR 0312800, 10.1007/BF01593087
.

Files

Files Size Format View
MathBohem_139-2014-2_18.pdf 256.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo