Title:
|
New hyper-Käahler structures on tangent bundles (English) |
Author:
|
Qi, Xuerong |
Author:
|
Cao, Linfen |
Author:
|
Li, Xingxiao |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
22 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
13-30 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(M,g,J)$ be an almost Hermitian manifold, then the tangent bundle $TM$ carries a class of naturally defined almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$. In this paper we give conditions under which these almost hyper-Hermitian structures $(G,J_1,J_2,J_3)$ are locally conformal hyper-Kähler. As an application, a family of new hyper-\kr structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle $T_1 M$, we obtain a class of almost contact metric 3-structures. By virtue of these almost contact metric 3-structures, we find a family of Sasakian 3-structures on the unit tangent sphere bundle of a complex space form of positive holomorphic sectional curvature. (English) |
Keyword:
|
tangent bundles |
Keyword:
|
locally conformal hyper-Kähler structures |
Keyword:
|
almost contact metric 3-structures |
Keyword:
|
Sasakian 3-structures |
MSC:
|
53C15 |
MSC:
|
53C26 |
idZBL:
|
Zbl 06359720 |
idMR:
|
MR3233724 |
. |
Date available:
|
2014-08-27T08:53:03Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143903 |
. |
Reference:
|
[1] Anastasiei, M.: Locally conformal Kähler structures on tangent manifold of a space form.Libertas Math., 19, 1999, 71-76, MR 1726175 |
Reference:
|
[2] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds.2002, Progr. Math. Birkhäuser, Boston, Zbl 1011.53001, MR 1874240 |
Reference:
|
[3] Bogdanovich, S.A., Ermolitski, A.A.: On almost hyperHermitian structures on Riemannian manifolds and tangent bundles.Cent. Eur. J. Math., 2, 5, 2004, 615-623, MR 2172044, 10.2478/BF02475969 |
Reference:
|
[4] Calabi, E.: Métriques kähleriennes et fibrés holomophes.Ann. Sci. École Norm. Sup., 12, 1979, 269-294, MR 0543218 |
Reference:
|
[5] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature.Ann. Math., 96, 1972, 413-443, Zbl 0246.53049, MR 0309010, 10.2307/1970819 |
Reference:
|
[6] Dombrowski, P.: On the geometry of the tangent bundle.J. Reine Angew. Math., 210, 1962, 73-88, Zbl 0105.16002, MR 0141050 |
Reference:
|
[7] Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold.J. Reine Angew. Math., 250, 1971, 124-129, Zbl 0222.53044, MR 0286028 |
Reference:
|
[8] Li, X.X., Qi, X.R.: A note on some metrics on tangent bundles and unit tangent sphere bundles.J. Math. Res. Exposition, 28, 4, 2008, 829-838, Zbl 1199.53056, MR 2465193 |
Reference:
|
[9] Munteanu, M.I.: Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold.Mediterr. J. Math., 5, 2008, 43-59, Zbl 1177.53022, MR 2406440, 10.1007/s00009-008-0135-4 |
Reference:
|
[10] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles.Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, Zbl 0658.53045, MR 0946027, 10.1007/BF01761461 |
Reference:
|
[11] Nagano, T.: Isometries on complex-product spaces.Tensor, 9, 1959, 47-61, Zbl 0092.15003, MR 0107877 |
Reference:
|
[12] Oproiu, V.: A Kähler Einstein structure on the tangent bundle of a space form.Int. J. Math. Math. Sci., 25, 2001, 183-195, Zbl 0981.53063, MR 1812382, 10.1155/S0161171201002009 |
Reference:
|
[13] Oproiu, V.: Hyper-Kähler structures on the tangent bundle of a Kähler manifold.Balkan J. Geom. Appl., 15, 1, 2010, 104-119, MR 2608513 |
Reference:
|
[14] Oproiu, V., Papaghiuc, N.: General natural Einstein Kähler structures on tangent bundles.Differential Geom. Appl., 27, 2009, 384-392, Zbl 1181.53059, MR 2521898, 10.1016/j.difgeo.2008.10.017 |
Reference:
|
[15] Oproiu, V., Poroşniuc, D.D.: A class of Kähler Einstein structures on the cotangent bundle.Publ. Math. Debrecen, 66, 3--4, 2005, 457-478, Zbl 1082.53029, MR 2137782 |
Reference:
|
[16] Ornea, L., Piccinni, P.: Locally conformal Kähler structures in quaternionic geometry.Trans. Amer. Math. Soc., 349, 2, 1997, 641-655, Zbl 0865.53038, MR 1348155, 10.1090/S0002-9947-97-01591-2 |
Reference:
|
[17] Poroşniuc, D.D.: A class of locally symmetric Kähler Einstein structures on the nonzero cotangent bundle of a space form.Balkan J. Geom. Appl., 9, 2, 2004, 68-81, Zbl 1069.53043, MR 2205279 |
Reference:
|
[18] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tôhoku Math. J., 10, 1958, 338-354, Zbl 0086.15003, MR 0112152, 10.2748/tmj/1178244668 |
Reference:
|
[19] Tachibana, S., Okumura, M.: On the almost-complex structure of tangent bundles of Riemannian spaces.Tôhoku Math. J., 14, 2, 1962, 156-161, Zbl 0114.38003, MR 0143166, 10.2748/tmj/1178244170 |
Reference:
|
[20] Tahara, M., Vanhecke, L., Watanabe, Y.: New structures on tangent bundles.Note Mat., 18, 1, 1998, 131-141, Zbl 0964.53021, MR 1759021 |
Reference:
|
[21] Vaisman, I.: On locally conformal almost Kähler manifolds.Israel J. Math., 24, 1976, 338-351, MR 0418003, 10.1007/BF02834764 |
Reference:
|
[22] Zayatuev, B.V.: On a class of almost-Hermitian structures on tangent bundles.Math. Notes, 76, 5, 2004, 682-688, MR 2129339, 10.1023/B:MATN.0000049667.15551.02 |
. |