Title:
|
Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups (English) |
Author:
|
Guediri, Mohammed |
Author:
|
Bin-Asfour, Mona |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
171-192 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The purpose of this paper is to investigate Ricci-flatness of left-invariant Lorentzian metrics on 2-step nilpotent Lie groups. We first show that if $\left\langle \, ,\right\rangle $ is a Ricci-flat left-invariant Lorentzian metric on a 2-step nilpotent Lie group $N$, then the restriction of $\left\langle \, ,\right\rangle $ to the center of the Lie algebra of $N$ is degenerate. We then characterize the 2-step nilpotent Lie groups which can be endowed with a Ricci-flat left-invariant Lorentzian metric, and we deduce from this that a Heisenberg Lie group $H_{2n+1}$ can be endowed with Ricci-flat left-invariant Lorentzian metric if and only if $n=1$. We also show that the free 2-step nilpotent Lie group on $m$ generators $N_{m,2}$ admits a Ricci-flat left-invariant Lorentzian metric if and only if $m=2$ or $m=3$, and we determine all Ricci-flat left-invariant Lorentzian metrics on the free $2$-step nilpotent Lie group on $3$ generators $N_{3,2}$. (English) |
Keyword:
|
2-step nilpotent Lie groups |
Keyword:
|
free nilpotent groups |
Keyword:
|
left-invariant Lorentzian metrics |
Keyword:
|
Ricci-flatness |
MSC:
|
22E25 |
MSC:
|
53C25 |
MSC:
|
53C50 |
idZBL:
|
Zbl 06487005 |
idMR:
|
MR3263659 |
DOI:
|
10.5817/AM2014-3-171 |
. |
Date available:
|
2014-09-20T17:12:35Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143925 |
. |
Reference:
|
[1] Alekseevskii, D., Kimelfeld, B.: Structure of homogeneous Riemannian spaces with zero Ricci curvature.Funct. Anal. Appl. 9 (1975), 97–102. MR 0402650, 10.1007/BF01075445 |
Reference:
|
[2] Asfour, M.: Curvatures of left-invariant Lorentzian metrics on solvable Lie groups.Ph.D. thesis, in preparation. |
Reference:
|
[3] Aubert, A., Medina, A.: Groupes de Lie pseudo-Riemanniens plats.Tôhoku Math. J. (2) 55 (2003), no. 4, 487–506. Zbl 1058.53055, MR 2017221, 10.2748/tmj/1113247126 |
Reference:
|
[4] Bérard-Bergery, L.: Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes.Ann. Sci. École Norm. Sup. (4) 11 (1978), 543–576. Zbl 0426.53038, MR 0533067 |
Reference:
|
[5] Boucetta, M.: Ricci flat left invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups.arXiv:0910.2563v1[math.DG], 2009. |
Reference:
|
[6] Boucetta, M., Lebzioui, H.: Nonunimodular Lorentzian flat Lie algebras.arXiv:1401.0950v1 [math.DG], 2014. |
Reference:
|
[7] Cordero, L., Parker, P.: Pseudo-Riemannian 2-step nilpotent Lie group.arXiv:math/9905188 [math.DG], 1999. |
Reference:
|
[8] Eberlein, P.: Geometry of 2-step nilpotent groups with a left-invariant metric.Ann. Sci. École Norm. Sup. (4) 27 (1994), 611–660. Zbl 0820.53047, MR 1296558 |
Reference:
|
[9] Eberlein, P.: The moduli space of 2-step nilpotent Lie algebras of type $(p,q)$.Contemp. Math. 332 (2003), 37–72. Zbl 1045.17003, MR 2016090, 10.1090/conm/332/05929 |
Reference:
|
[10] Eberlein, P.: Geometry of 2-step nilpotent Lie groups.Modern Dynamical Systems, Cambridge University Press, 2004, pp. 67–101. Zbl 1154.22009, MR 2090766 |
Reference:
|
[11] Grunewald, F., Margulis, G.: Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz structure.J. Geom. Phys. (1988), 493–531. Zbl 0706.57022, MR 1075720, 10.1016/0393-0440(88)90017-4 |
Reference:
|
[12] Guediri, M.: Sur la completude des pseudo-metriques invariantes a gauche sur les groupes de Lie nilpotents.Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371–376. Zbl 0838.53035, MR 1345607 |
Reference:
|
[13] Guediri, M.: Lorentz geometry of 2-step nilpotent Lie groups.Geom. Dedicata 100 (2003), 11–51. Zbl 1037.53046, MR 2011112, 10.1023/A:1025832108196 |
Reference:
|
[14] Guediri, M.: On the nonexistence of closed timelike geodesics in flat lorentz 2-step nilmanifolds.Trans. Amer. Math. Soc. 355 (2003), 775–786. Zbl 1028.53045, MR 1932725, 10.1090/S0002-9947-02-03114-8 |
Reference:
|
[15] Guediri, M.: Compact flat spacetimes.Differential Geom. Appl. 21 (2004), 283–295. Zbl 1085.53062, MR 2091365, 10.1016/j.difgeo.2004.05.003 |
Reference:
|
[16] Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms.Trans. Amer. Math. Soc. 258 (1980), 147–153. Zbl 0393.35015, MR 0554324, 10.1090/S0002-9947-1980-0554324-X |
Reference:
|
[17] Kaplan, A.: Riemannian nilmanifolds attached to Clifford modules.Geom. Dedicata 11 (1981), 127–136. Zbl 0495.53046, MR 0621376, 10.1007/BF00147615 |
Reference:
|
[18] Kaplan, A.: On the geometry of groups of Heisenberg type.Bull. Lond. Math. Soc. 15 (1983), 35–42. Zbl 0521.53048, MR 0686346, 10.1112/blms/15.1.35 |
Reference:
|
[19] Milnor, J.: Curvatures of left invariant metrics on Lie groups.Adv. Math. 21 (1976), 293–329. Zbl 0341.53030, MR 0425012, 10.1016/S0001-8708(76)80002-3 |
Reference:
|
[20] Nomizu, K.: Left-invariant Lorentz metrics on Lie groups.Osaka J. Math. 16 (1979), 143–150. Zbl 0397.53047, MR 0527022 |
Reference:
|
[21] O’Neill, B.: Semi-Riemannian geometry with applications to relativity.Academic Press, New York, 1983. MR 0719023 |
Reference:
|
[22] Ovando, G.: Free nilpotent Lie algebras admitting ad-invariant metrics.arXiv:1104.4773v2 [math.RA], 2011. |
. |