Previous |  Up |  Next

Article

Title: On conformal powers of the Dirac operator on spin manifolds (English)
Author: Fischmann, Matthias
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 50
Issue: 4
Year: 2014
Pages: 237-253
Summary lang: English
.
Category: math
.
Summary: The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle. (English)
Keyword: conformal and spin geometry
Keyword: conformal powers of the Dirac operator
Keyword: conformal covariance
Keyword: tractor bundle
Keyword: tractor D-operator
MSC: 53A30
MSC: 53C27
idZBL: Zbl 06487009
idMR: MR3291852
DOI: 10.5817/AM2014-4-237
.
Date available: 2014-12-09T14:45:01Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144021
.
Reference: [1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures.Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. Zbl 0828.53012, MR 1322223, 10.1216/rmjm/1181072333
Reference: [2] Branson, T.: Conformally covariant equations on differential forms.Comm. Partial Differential Equation 7 (4) (1982), 393–431. Zbl 0532.53021, MR 0652815, 10.1080/03605308208820228
Reference: [3] Branson, T.: Conformal structure and spin geometry.Dirac Operators: Yesterday and Today, International Press, 2005. Zbl 1109.53051, MR 2205362
Reference: [4] Čap, A., Slovák, J.: Parabolic Geometries: Background and General Theory.vol. 1, American Mathematical Society, 2009. MR 2532439
Reference: [5] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues.Comm. Math. Phys. 109 (2) (1987), 207–228. Zbl 0659.53047, MR 0880414
Reference: [6] Eelbode, D., Souček, V.: Conformally invariant powers of the Dirac operator in Clifford analysis.Math. Methods Appl. Sci. 33 (13) (2010), 1558–1570. Zbl 1201.30065, MR 2680665
Reference: [7] Fefferman, C., Graham, C.R.: Conformal invariants. The mathematical heritage of Élie Cartan (Lyon, 1984).yon, 1984), Astérisque, Numéro Hors Série (1985), 95–116. MR 0837196
Reference: [8] Fefferman, C., Graham, C.R.: The ambient metric.Annals of Mathematics Studies, vol. 178, Princeton University Press, Princeton, NJ, 2012. Zbl 1243.53004, MR 2858236
Reference: [9] Fegan, H.D.: Conformally invariant first order differential operators.Quart. J. Math. Oxford (2) 27 (107) (1976), 371–378. Zbl 0334.58016, MR 0482879, 10.1093/qmath/27.3.371
Reference: [10] Fischmann, M.: Conformally covariant differential operators acting on spinor bundles and related conformal covariants.Ph.D. thesis, Humboldt Universität zu Berlin, 2013, http://edoc.hu-berlin.de/dissertationen/fischmann-matthias-2013-03-04/PDF/fischmann.pdf.
Reference: [11] Fischmann, M., Krattenthaler, C., Somberg, P.: On conformal powers of the Dirac operator on Einstein manifolds.ArXiv e-prints (2014), http://arxiv.org/abs/1405.7304. MR 3369353
Reference: [12] Gover, A.R.: Laplacian operators and $Q$-curvature on conformally Einstein manifolds.Math. Anal. 336 (2) (2006), 311–334. Zbl 1125.53032, MR 2244375, 10.1007/s00208-006-0004-z
Reference: [13] Gover, A.R., Hirachi, K.: Conformally invariant powers of the Laplacian - A complete non-existence theorem.J. Amer. Math. Soc. 14 (2) (2004), 389–405. MR 2051616, 10.1090/S0894-0347-04-00450-3
Reference: [14] Gover, A.R., Peterson, L.J.: Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus.Comm. Math. Phys. 235 (2) (2003), 339–378. Zbl 1022.58014, MR 1969732, 10.1007/s00220-002-0790-4
Reference: [15] Graham, C.R., Jenne, R.W., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian, I: Existence.J. London Math. Soc. (2) 2 (3) (1992), 557–565. Zbl 0726.53010, MR 1190438
Reference: [16] Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry.Invent. Math. 152 (2003), 89–118. Zbl 1030.58022, MR 1965361, 10.1007/s00222-002-0268-1
Reference: [17] Guillarmou, C., Moroianu, S., Park, J.: Bergman and Calderón projectors for Dirac operators.J. Geom. Anal. (2012), 1–39, http://dx.doi.org/10.1007/s12220-012-9338-9. 10.1007/s12220-012-9338-9
Reference: [18] Hitchin, N.J.: Harmonic spinors.Adv. Math. 14 (1) (1974), 1–55. Zbl 0284.58016, MR 0358873, 10.1016/0001-8708(74)90021-8
Reference: [19] Holland, J., Sparling, G.: Conformally invariant powers of the ambient Dirac operator.ArXiv e-prints (2001), http://arxiv.org/abs/math/0112033.
Reference: [20] Juhl, A.: On conformally covariant powers of the Laplacian.ArXiv e-prints (2010), http://arxiv.org/abs/0905.3992.
Reference: [21] Juhl, A.: Explicit formulas for GJMS-operators and $Q$-curvatures.Geom. Funct. Anal. 23 (2013), 1278–1370, http://arxiv.org/abs/1108.0273. Zbl 1293.53049, MR 3077914, 10.1007/s00039-013-0232-9
Reference: [22] Kosmann, Y.: Propriétés des dérivations de l’algèbre des tenseurs-spineurs.C. R. Acad. Sci. Paris Sér. A 264 (1967), 355–358. MR 0212712
Reference: [23] Ørsted, B.: A note on the conformal quasi-invariance of the Laplacian on a pseudo-Riemannian manifold.Lett. Math. Phys. 1 (3) (1976), 183–186. Zbl 0338.53046, MR 0433524, 10.1007/BF00417601
Reference: [24] Šilhan, J.: Invariant differential operators in conformal geometry.Ph.D. thesis, University of Auckland, 2006.
Reference: [25] Slovák, J.: Natural operators on conformal manifolds.Ph.D. thesis, Masaryk University Brno, 1993. Zbl 0805.53011, MR 1255551
Reference: [26] Thomas, T.Y.: On conformal geometry.Proc. Nat. Acad. Sci. U.S.A. 12 (5) (1926), 352–359. 10.1073/pnas.12.5.352
Reference: [27] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka J. Math. 12 (1) (1960), 21–37. Zbl 0096.37201, MR 0125546
.

Files

Files Size Format View
ArchMathRetro_050-2014-4_4.pdf 558.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo