Previous |  Up |  Next

Article

Title: Approximated maximum likelihood estimation of parameters of discrete stable family (English)
Author: Slámová, Lenka
Author: Klebanov, Lev B.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 1065-1076
Summary lang: English
.
Category: math
.
Summary: In this article we propose a method of parameters estimation for the class of discrete stable laws. Discrete stable distributions form a discrete analogy to classical stable distributions and share many interesting properties with them such as heavy tails and skewness. Similarly as stable laws discrete stable distributions are defined through characteristic function and do not posses a probability mass function in closed form. This inhibits the use of classical estimation methods such as maximum likelihood and other approach has to be applied. We depart from the $\mathcal{H}$-method of maximum likelihood suggested by Kagan (1976) where the likelihood function is replaced by a function called informant which is an approximation of the likelihood function in some Hilbert space. For this method only some functionals of the distribution are required, such as probability generating function or characteristic function. We adopt this method for the case of discrete stable distributions and in a simulation study show the performance of this method. (English)
Keyword: discrete stable distribution
Keyword: parameter estimation
Keyword: maximum likelihood
MSC: 60E07
MSC: 60E10
MSC: 62F12
MSC: 62G05
MSC: 65C60
idZBL: Zbl 1308.60022
idMR: MR3301786
DOI: 10.14736/kyb-2014-6-1065
.
Date available: 2015-01-13T10:10:26Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144123
.
Reference: [1] Devroye, L.: A triptych of discrete distributions related to the stable law..Stat. Probab. Lett. 18 (1993), 349-351. Zbl 0794.60007, MR 1247445, 10.1016/0167-7152(93)90027-G
Reference: [2] Feuerverger, A., McDunnough, P.: On the efficiency of empirical characteristic function procedure..J. Roy. Stat. Soc. Ser. B 43 (1981), 20-27. MR 0610372
Reference: [3] Gerlein, O. V., Kagan, A. M.: Hilbert space methods in classical problems of mathematical statistics..J. Soviet Math. 12 (1979), 184-213. Zbl 0354.62007, 10.1007/BF01262718
Reference: [4] Kagan, A. M.: Fisher information contained in a finite-dimensional linear space, and a correctly posed version of the method of moments (in Russian)..Problemy Peredachi Informatsii 12 (1976), 20-42. MR 0413340
Reference: [5] Klebanov, L. B., Melamed, I. A.: Several notes on Fisher information in presence of nuisance parameters..Statistics: J. Theoret. Appl. Stat. 9 (1978), 85-90. Zbl 0381.62007, MR 0506482
Reference: [6] Klebanov, L. B., Slámová, L.: Integer valued stable random variables..Stat. Probab. Lett. 83 (2013), 1513-1519. Zbl 1283.60022, MR 3048317, 10.1016/j.spl.2013.02.016
Reference: [7] Slámová, L., Klebanov, L. B.: Modelling financial returns with discrete stable distributions..In: Proc. 30th International Conference Mathematical Methods in Economics (J. Ramík and D. Stavárek, eds.), Silesian University in Opava, School of Business Administration in Karviná, 2012, pp. 805-810.
Reference: [8] Steutel, F. W., Harn, K. van: Discrete analogues of self-decomposability and stability..Ann. Probab. 7 (1979), 893-899. MR 0542141, 10.1214/aop/1176994950
.

Files

Files Size Format View
Kybernetika_50-2014-6_12.pdf 336.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo