| Title:
             | 
Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra (English) | 
| Author:
             | 
Küter, Benjamin | 
| Language:
             | 
English | 
| Journal:
             | 
Communications in Mathematics | 
| ISSN:
             | 
1804-1388 | 
| Volume:
             | 
22 | 
| Issue:
             | 
2 | 
| Year:
             | 
2014 | 
| Pages:
             | 
141-149 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We show that in contrast to the case of the operator norm topology on the set of regular operators, the Fuglede-Kadison determinant is not continuous on isomorphisms in the group von Neumann algebra $\mathcal {N}(\mathbb {Z})$ with respect to the strong operator topology. Moreover, in the weak operator topology the determinant is not even continuous on isomorphisms given by multiplication with elements of $\mathbb {Z}[\mathbb {Z}]$. Finally, we define $T\in \mathcal {N}(\mathbb {Z})$ such that for each $\lambda \in \mathbb {R}$ the operator $T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})}$ is a self-adjoint weak isomorphism of determinant class but $\lim _{\lambda \to 0}\det (T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})})\neq \det (T)$. (English) | 
| Keyword:
             | 
Fuglede-Kadison determinant | 
| Keyword:
             | 
group von Neumann algebra | 
| MSC:
             | 
47C15 | 
| idZBL:
             | 
Zbl 06410231 | 
| idMR:
             | 
MR3303135 | 
| . | 
| Date available:
             | 
2015-01-27T09:37:37Z | 
| Last updated:
             | 
2020-01-05 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144127 | 
| . | 
| Reference:
             | 
[1] Fuglede, B., Kadison, R.V.: Determinant theory in finite factors.Ann. of Math., 55, 2, 1952, 520-530,  Zbl 0046.33604, MR 0052696, 10.2307/1969645 | 
| Reference:
             | 
[2] Georgescu, C., Picioroaga, G.: Fuglede-Kadison determinants for operators in the von Neumann algebra of an equivalence relation.Proc. Amer. Math. Soc., 142, 2014, 173-180,  Zbl 1282.47061, MR 3119192, 10.1090/S0002-9939-2013-11757-0 | 
| Reference:
             | 
[3] Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II.1983, Academic Press, ISBN 0-1239-3302-1.  MR 0719020 | 
| Reference:
             | 
[4] Lück, W.: $L^2$-Invariants: Theory and Applications to Geometry and K-Theory.2002, Springer Verlag (Heidelberg), ISBN 978-3-540-43566-2.  Zbl 1009.55001, MR 1926649 | 
| . |