Previous |  Up |  Next

Article

Keywords:
$r$-topology; $m$-topology; almost $P$-space; pseudocompact space; component; classical ring of quotients of $C(X)$
Summary:
In this article we define the $m$-topology on some rings of quotients of $C(X)$. Using this, we equip the classical ring of quotients $q(X)$ of $C(X)$ with the $m$-topology and we show that $C(X)$ with the $r$-topology is in fact a subspace of $q(X)$ with the $m$-topology. Characterization of the components of rings of quotients of $C(X)$ is given and using this, it turns out that $q(X)$ with the $m$-topology is connected if and only if $X$ is a pseudocompact almost $P$-space, if and only if $C(X)$ with $r$-topology is connected. We also observe that the maximal ring of quotients $Q(X)$ of $C(X)$ with the $m$-topology is connected if and only if $X$ is finite. Finally for each point $x$, we introduce a natural ring of quotients of $C(X)/O_x$ which is connected with the $m$-topology.
References:
[1] Azarpanah F., Manshoor F., Mohamadian R.: Connectedness and compactness in $C(X)$ with the $m$-topology and generalized $m$-topology. Topology Appl. 159 (2012), 3486–3493. DOI 10.1016/j.topol.2012.08.010 | MR 2964861 | Zbl 1255.54009
[2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters. Die Grundelehren der Math. Wissenschaften, 211, Springer, New York-Heidelberg-Berlin, 1974. MR 0396267 | Zbl 0298.02004
[3] Dashiell F., Hager A., Henriksen M.: Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. 32 (1980), no. 3, 657–685. DOI 10.4153/CJM-1980-052-0 | MR 0586984 | Zbl 0462.54009
[4] Engelking R.: General Topology. PWN-Polish Sci. Publ., Warsaw, 1977. MR 0500780 | Zbl 0684.54001
[5] Fine N.J., Gillman L., Lambek J.: Rings of quotients of rings of continuous functions. Lecture Note Series, McGill University Press, Montreal, 1966. MR 0200747
[6] Gillman L., Jerison M.: Rings of Continuous Functions. Springer, New York-Heidelberg, 1976. MR 0407579 | Zbl 0327.46040
[7] Gomez-Pérez J., McGovern W.W.: The $m$-topology on $C_m(X)$ revisited. Topology Appl. 153 (2006), 1838–1848. DOI 10.1016/j.topol.2005.06.016 | MR 2227030 | Zbl 1117.54045
[8] Iberkleid W., Lafuente-Rodriguez R., McGovern W.Wm.: The regular topology on $C(X)$. Comment. Math. Univ. Carolin. 52 (2011), no. 3, 445–461. MR 2843236 | Zbl 1249.54037
[9] Henriksen M., Mitra B.: $C(X)$ can sometimes determine $X$ without $X$ being realcompact. Comment. Math. Univ. Carolin. 46 (2005), no. 4, 711–720. MR 2259501 | Zbl 1121.54035
[10] Hewitt E.: Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 48 (64) (1948), 54–99. MR 0026239 | Zbl 0032.28603
[11] Johnson D.G., Mandelker M.: Functions with pseudocompact support. General Topology Appl. 3 (1973), 331–338. DOI 10.1016/0016-660X(73)90020-2 | MR 0331310 | Zbl 0277.54009
[12] Di Maio G., Holá L'., Holý D., McCoy D.: Topology on the space of continuous functions. Topology Appl. 86 (1998), 105–122. DOI 10.1016/S0166-8641(97)00114-4 | MR 1621396
[13] Swardson M.: A generalization of $F$-spaces and some topological characterizations of GCH. Trans. Amer. Math. Soc. 279 (1983), 661–675. MR 0709575 | Zbl 0535.54023
[14] van Douwen E.K.: Nonnormality or hereditary paracompactness of some spaces of real functions. Topology Appl. 39 (1991), 3–32. DOI 10.1016/0166-8641(91)90072-T | MR 1103988 | Zbl 0755.54008
[15] Walker R.C.: The Stone-Čech Compactification. Springer, Berlin-Heidelberg-New York, 1974. MR 0380698 | Zbl 0292.54001
[16] Warner S.: Topological Rings. North-Holland Mathematics Studies, 178, North-Holland, Ansterdam, 1993. MR 1240057 | Zbl 0785.13008
[17] Wilard S.: General Topology. Addison-Wesley, Readings, MA, 1970. MR 0264581
Partner of
EuDML logo