Previous |  Up |  Next

Article

Title: Lagrange approximation in Banach spaces (English)
Author: Nilsson, Lisa
Author: Pinasco, Damián
Author: Zalduendo, Ignacio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 281-288
Summary lang: English
.
Category: math
.
Summary: Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \to \mathbb C$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence. (English)
Keyword: Lagrange interpolation
Keyword: Lagrange approximation
Keyword: Kergin interpolation
Keyword: Kergin approximation
Keyword: Banach space
MSC: 30E10
MSC: 30E20
MSC: 46G20
idZBL: Zbl 06433735
idMR: MR3336039
DOI: 10.1007/s10587-015-0174-5
.
Date available: 2015-04-01T12:46:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144227
.
Reference: [1] Andersson, M., Passare, M.: Complex Kergin interpolation.J. Approx. Theory 64 (1991), 214-225. Zbl 0725.32011, MR 1091471, 10.1016/0021-9045(91)90076-M
Reference: [2] Bloom, T.: Kergin interpolation of entire functions on $\mathbb{C}^n$.Duke Math. J. 48 (1981), 69-83. MR 0610176, 10.1215/S0012-7094-81-04805-5
Reference: [3] Boor, C. de: Divided differences.Surv. Approx. Theory 1 (2005), 46-69. Zbl 1071.65027, MR 2221566
Reference: [4] Dineen, S., Nilsson, L.: Integral representation of holomorphic mappings on fully nuclear spaces.J. Math. Anal. Appl. 339 146-152 (2008). Zbl 1134.46019, MR 2370639, 10.1016/j.jmaa.2007.04.035
Reference: [5] Fernique, X.: Intégrabilité des vecteurs Gaussiens.C. R. Acad. Sci., Paris, Sér. A 270 1698-1699 (1970), French. Zbl 0206.19002, MR 0266263
Reference: [6] Filipsson, L.: Kergin interpolation in Banach spaces.J. Approx. Theory 127 108-123 (2004). Zbl 1043.41001, MR 2053536, 10.1016/j.jat.2004.01.002
Reference: [7] Filipsson, L.: Complex mean-value interpolation and approximation of holomorphic functions.J. Approx. Theory 91 244-278 (1997). Zbl 0904.32012, MR 1484043, 10.1006/jath.1996.3096
Reference: [8] Gelfond, A. O.: Calcul des Différences Finies.Collection Universitaire de Mathématiques 12 Dunod, Paris French (1963). MR 0157139
Reference: [9] Genocchi, A.: On the Maclaurin summation formula and interpolating functions.C. R. Acad. Sci., Paris, Sér. A 86 Italian 466-469 (1878).
Reference: [10] Kergin, P.: A natural interpolation of $C^K$ functions.J. Approx. Theory 29 278-293 (1980). MR 0598722, 10.1016/0021-9045(80)90116-1
Reference: [11] Kuo, H.-H.: Gaussian Measures in Banach Spaces.Lecture Notes in Mathematics 463 Springer, Berlin (1975). Zbl 0306.28010, MR 0461643, 10.1007/BFb0082008
Reference: [12] Petersson, H.: Kergin interpolation in Banach spaces.Stud. Math. 153 101-114 (2002). Zbl 1085.46032, MR 1948919, 10.4064/sm153-2-1
Reference: [13] Pinasco, D., Zalduendo, I.: Integral representation of holomorphic functions on Banach spaces.J. Math. Anal. Appl. 308 159-174 (2005). Zbl 1086.46033, MR 2142411, 10.1016/j.jmaa.2004.11.031
Reference: [14] Simon, S.: Kergin approximation in Banach spaces.J. Approx. Theory 154 181-186 (2008). Zbl 1157.41001, MR 2474771, 10.1016/j.jat.2008.04.006
.

Files

Files Size Format View
CzechMathJ_65-2015-1_17.pdf 257.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo