Title:
|
On some free semigroups, generated by matrices (English) |
Author:
|
Słanina, Piotr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
289-299 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $$ A=\left [ \begin {matrix} 1 & 2 \\ 0 & 1 \end {matrix} \right ],\quad B_{\lambda }=\left [ \begin {matrix} 1 & 0 \\ \lambda & 1 \end {matrix} \right ]. $$ We call a complex number $\lambda $ “semigroup free“ if the semigroup generated by $A$ and $B_{\lambda }$ is free and “free” if the group generated by $A$ and $B_{\lambda }$ is free. First families of semigroup free $\lambda $'s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free $\lambda $'s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture. (English) |
Keyword:
|
free semigroup |
Keyword:
|
semigroup of matrices |
MSC:
|
15A30 |
MSC:
|
20E05 |
MSC:
|
20M05 |
idZBL:
|
Zbl 06486946 |
idMR:
|
MR3360426 |
DOI:
|
10.1007/s10587-015-0175-4 |
. |
Date available:
|
2015-06-16T17:29:44Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144268 |
. |
Reference:
|
[1] Bamberg, J.: Non-free points for groups generated by a pair of {$2\times 2$} matrices.J. Lond. Math. Soc., II. Ser. 62 (2000), 795-801. Zbl 1019.20014, MR 1794285, 10.1112/S0024610700001630 |
Reference:
|
[2] Brenner, J. L.: Quelques groupes libres de matrices.C. R. Acad. Sci., Paris 241 French (1955), 1689-1691. Zbl 0065.25402, MR 0075952 |
Reference:
|
[3] Brenner, J. L., Charnow, A.: Free semigroups of {$2\times 2$} matrices.Pac. J. Math. 77 (1978), 57-69. Zbl 0382.20044, MR 0507620, 10.2140/pjm.1978.77.57 |
Reference:
|
[4] Chang, B., Jennings, S. A., Ree, R.: On certain pairs of matrices which generate free groups.Can. J. Math. 10 (1958), 279-284. Zbl 0081.25902, MR 0094388, 10.4153/CJM-1958-029-2 |
Reference:
|
[5] Harpe, P. de la: Topics in Geometric Group Theory.Chicago Lectures in Mathematics The University of Chicago Press, Chicago (2000). Zbl 0965.20025, MR 1786869 |
Reference:
|
[6] Fuchs-Rabinowitsch, D. J.: On a certain representation of a free group.Leningrad State Univ. Annals Math. Ser. 10 Russian (1940), 154-157. MR 0003414 |
Reference:
|
[7] Ignatov, J. A.: Free and nonfree subgroups of $ PSL_{2}(\mathbb{C})$ that are generated by two parabolic elements.Mat. Sb., Nov. Ser. 106 Russian (1978), 372-379. MR 0505107 |
Reference:
|
[8] Ignatov, Y. A., Evtikhova, A. V.: Free groups of linear-fractional transformations.Chebyshevskiĭ Sb. 3 Russian (2002), 78-81. Zbl 1112.20045, MR 2023624 |
Reference:
|
[9] Ignatov, Y. A., Gruzdeva, T. N., Sviridova, I. A.: Free groups of linear-fractional transformations.Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 5 (1999), 116-120. MR 1749349 |
Reference:
|
[10] Keen, L., Series, C.: The Riley slice of Schottky space.Proc. Lond. Math. Soc. (3) 69 (1994), 72-90. Zbl 0807.30031, MR 1272421 |
Reference:
|
[11] Lyndon, R. C., Ullman, J. L.: Groups generated by two parabolic linear fractional transformations.Can. J. Math. 21 (1969), 1388-1403. Zbl 0191.01904, MR 0258975, 10.4153/CJM-1969-153-1 |
Reference:
|
[12] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80 Springer, New York (1996). MR 1357169 |
Reference:
|
[13] Saks, S., Zygmund, A.: Analytic Functions.PWN-Polish Scientific Publishers Warsaw (1965). Zbl 0136.37301, MR 0180658 |
Reference:
|
[14] Sanov, I. N.: A property of a representation of a free group.Dokl. Akad. Nauk SSSR, N. Ser. 57 Russian (1947), 657-659. MR 0022557 |
Reference:
|
[15] Słanina, P.: On some free groups, generated by matrices.Demonstr. Math. (electronic only) 37 (2004), 55-61. Zbl 1050.20016, MR 2053102 |
. |