Full entry |
PDF
(0.3 MB)
Feedback

SIS model; asymptotically autonomous system; global asymptotic stability; Lyapunov functional; transport-related infection

References:

[1] Castillo-Chavez, C., Thieme, H. R.: **Asymptotically autonomous epidemic models**. Mathematical Population Dynamics: Analysis of Heterogeneity I. Theory of Epidemics 1 Wuerz Pub. 33-50 (1995).

[2] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.: **Delay Equations. Functional-, Complex-, and Nonlinear Analysis**. Applied Mathematical Sciences 110 Springer, New York (1995). MR 1345150

[3] Hale, J. K., Lunel, S. M. Verduyn: **Introduction to Functional Differential Equations**. Applied Mathematical Sciences 99 Springer, New York (1993). DOI 10.1007/978-1-4612-4342-7_3 | MR 1243878

[4] Knipl, D. H.: **Fundamental properties of differential equations with dynamically defined delayed feedback**. Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Article No. 17, 18 pages. MR 3033802

[5] Knipl, D. H., Röst, G., Wu, J.: **Epidemic spread and variation of peak times in connected regions due to travel-related infections---dynamics of an antigravity-type delay differential model**. SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 1722-1762. DOI 10.1137/130914127 | MR 3116637 | Zbl 1284.34119

[6] Liu, J., Wu, J., Zhou, Y.: **Modeling disease spread via transport-related infection by a delay differential equation**. Rocky Mt. J. Math. 38 (2008), 1525-1540. DOI 10.1216/RMJ-2008-38-5-1525 | MR 2457374 | Zbl 1194.34111

[7] Mischaikow, K., Smith, H., Thieme, H. R.: **Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions**. Trans. Am. Math. Soc. 347 (1995), 1669-1685. DOI 10.1090/S0002-9947-1995-1290727-7 | MR 1290727 | Zbl 0829.34037

[8] Nakata, Y.: **On the global stability of a delayed epidemic model with transport-related infection**. Nonlinear Anal., Real World Appl. 12 (2011), 3028-3034. MR 2832945 | Zbl 1231.34128

[9] Nakata, Y., Röst, G.: **Global analysis for spread of infectious diseases via transportation networks**. J. Math. Biol. 70 (2015), 1411-1456. DOI 10.1007/s00285-014-0801-z | MR 3323601 | Zbl 1316.34089

[10] Smith, H.: **An Introduction to Delay Differential Equations with Applications to the Life Sciences**. Texts in Applied Mathematics 57 Springer, New York (2011). DOI 10.1007/978-1-4419-7646-8 | MR 2724792 | Zbl 1227.34001

[11] Smith, H. L.: **Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems**. Mathematical Surveys and Monographs 41 American Mathematical Society, Providence (1995). MR 1319817 | Zbl 0821.34003

[12] Suzuki, M., Matsunaga, H.: **Stability criteria for a class of linear differential equations with off-diagonal delays**. Discrete Contin. Dyn. Syst. 24 (2009), 1381-1391. DOI 10.3934/dcds.2009.24.1381 | MR 2505710 | Zbl 1180.34082

[13] Thieme, H. R.: **Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations**. J. Math. Biol. 30 (1992), 755-763. DOI 10.1007/BF00173267 | MR 1175102 | Zbl 0761.34039