Previous |  Up |  Next

Article

MSC: 16S34, 46L10, 46L50
Keywords:
group rings; $\ell ^2$-invariants; residually $p$-finite groups; normal generation
Summary:
In this note we study sets of normal generators of finitely presented residually $p$-finite groups. We show that if an infinite, finitely presented, residually $p$-finite group $G$ is normally generated by $g_1,\dots ,g_k$ with order $n_1,\dots ,n_k \in \{1,2,\dots \} \cup \{\infty \}$, then $$\beta _1^{(2)}(G) \leq k-1-\sum _{i=1}^{k} \frac 1{n_i}\,,$$ where $\beta _1^{(2)}(G)$ denotes the first $\ell ^2$-Betti number of $G$. We also show that any $k$-generated group with $\beta _1^{(2)}(G) \geq k-1-\varepsilon $ must have girth greater than or equal $1/\varepsilon $.
References:
[1] Aschenbrenner, M., Friedl, S.: 3-manifold groups are virtually residually $p$. 225, 1058, 2013, American mathematical society, MR 3100378
[2] Atiyah, M. F.: Elliptic operators, discrete groups and von Neumann algebras. Astérisque, 32, 33, 1976, 43-72, Colloque ``Analyse et Topologie'' en l'Honneur de Henri Cartan (Orsay, 1974). MR 0420729 | Zbl 0323.58015
[3] Baumslag, G.: Residually finite one-relator groups. Bull. Amer. Math. Soc., 73, 1967, 618-620, DOI 10.1090/S0002-9904-1967-11799-3 | MR 0212078 | Zbl 0153.34904
[4] Cheeger, J., Gromov, M.: $L_2$-cohomology and group cohomology. Topology, 25, 2, 1986, 189-215, DOI 10.1016/0040-9383(86)90039-X | MR 0837621
[5] Formanek, E.: A short proof of a theorem of Jennings. Proc. Amer. Math. Soc., 26, 1970, 405-407, DOI 10.1090/S0002-9939-1970-0272895-7 | MR 0272895 | Zbl 0223.20033
[6] Gruenberg, K.: Residual properties of infinite soluble groups. Proc. London Math. Soc. (3), 7, 1957, 29-62, MR 0087652 | Zbl 0077.02901
[7] Gruenberg, K.: The residual nilpotence of certain presentations of finite groups. Arch. Math., 13, 1962, 408-417, DOI 10.1007/BF01650089 | MR 0159881 | Zbl 0111.02804
[8] Jennings, S. A.: The group ring of a class of infinite nilpotent groups. Canad. J. Math., 7, 1955, 169-187, DOI 10.4153/CJM-1955-022-5 | MR 0068540 | Zbl 0066.01302
[9] Lackenby, M.: Covering spaces of 3-orbifolds. Duke Math. J., 136, 1, 2007, 181-203, DOI 10.1215/S0012-7094-07-13616-0 | MR 2271299 | Zbl 1109.57015
[10] Lück, W.: Dimension theory of arbitrary modules over finite von Neumann algebras and $L^2$-Betti numbers. II. Applications to Grothendieck groups, $L^2$-Euler characteristics and Burnside groups. J. Reine Angew. Math., 496, 1998, 213-236, MR 1605818 | Zbl 1001.55019
[11] Lück, W.: $L\sp 2$-invariants: theory and applications to geometry and $K$-theory. 44, 2002, Springer-Verlag, Berlin, MR 1926649
[12] Lück, W., Osin, D.: Approximating the first $L^2$-Betti number of residually finite groups. J. Topol. Anal., 3, 2, 2011, 153-160, DOI 10.1142/S1793525311000532 | MR 2819192 | Zbl 1243.20039
[13] Osin, D., Thom, A.: Normal generation and $\ell ^2$-Betti numbers of groups. Math. Ann., 355, 4, 2013, 1331-1347, DOI 10.1007/s00208-012-0828-7 | MR 3037017 | Zbl 1286.20052
[14] Peterson, J., Thom, A.: Group cocycles and the ring of affiliated operators. Invent. Math., 185, 3, 2011, 561-592, DOI 10.1007/s00222-011-0310-2 | MR 2827095 | Zbl 1227.22003
[15] Pichot, M.: Semi-continuity of the first $l^2$-Betti number on the space of finitely generated groups. Comment. Math. Helv., 81, 3, 2006, 643-652, DOI 10.4171/CMH/67 | MR 2250857
[16] Platonov, V. P.: A certain problem for finitely generated groups. Dokl. Akad. Nauk USSR, 12, 1968, 492-494, MR 0231897 | Zbl 0228.20018
Partner of
EuDML logo